Theoretical Aspects of Higgs Productions at the LHC

V. Ravindran

Institute of Mathematical Sciences, Chennai

- \bullet Higgs phenomenon
- Unitarity, vacuum stability ...
- Why N^iLO for Higgs
- Higgs with Jets, tops
- Higgs Characterisation
- Conclusion

Symposium on Astro-particle and Nuclear physics, Jamia Milia, Jan 21-22, 2014.

- \bullet • Two high energetic photons ($E_T>25,35$ GeV)
- •Inviriant mass distribution
- Background: Sideband method (data based) •

- \bullet Four leptons in the final state
- \bullet Z mass constraint

Standard Model fit (Experiment)

Standard Model fit (Experiment)

Standard Model fit (Experiment)

• ATLAS: $m_h = 125 \pm 0.4 (stat) \pm 0.5(sys)$ GeV

 \bullet \bullet CMS: $m_h = 126 \pm 0.4(stat) \pm 0.5(sys)$ GeV **Standard Model fit (Theory)**

Standard Model fit (Theory)

Standard Model fit (Theory)

- \bullet Fit by theory colleagues
- \bullet Uses state of the art calculations in standard model and most of the available data onprecision measurements from experiments such as LEP, Tevatron etc

- \bullet Gauge principle in Quantum field theory provides framework to study interaction of elementary particles
- \bullet Gauge symmetry severely constraints the mass terms of gauge fields and matter fields.
- \bullet • Higgs mechanism provides a recipe to understand why Ws and Z have masses without spoiling gauge symmetry. spoiling gauge symmetry

- \bullet Gauge principle in Quantum field theory provides framework to study interaction of elementary particles
- •Gauge symmetry severely constraints the mass terms of gauge fields and matter fields.
- •• Higgs mechanism provides a recipe to understand why Ws and Z have masses without spoiling gauge symmetry. spoiling gauge symmetry

 \bullet It is done through the introduction of complex scalar field through $SU(2)_L\times U(1)_Y$ gauge
inverient Legrencien: invariant Lagrangian:

$$
\mathcal{L}_{\Phi} = (\mathcal{D}_{\mu} \Phi)^{\dagger} \mathcal{D}^{\mu} \Phi - V(\Phi), \qquad \Phi = \begin{pmatrix} \Phi^{+} \\ \Phi^{0} \end{pmatrix}
$$

- \bullet Gauge principle in Quantum field theory provides framework to study interaction of elementary particles
- •Gauge symmetry severely constraints the mass terms of gauge fields and matter fields.
- •• Higgs mechanism provides a recipe to understand why Ws and Z have masses without spoiling gauge symmetry. spoiling gauge symmetry

 \bullet It is done through the introduction of complex scalar field through $SU(2)_L\times U(1)_Y$ gauge
inverient Legrencien: invariant Lagrangian:

$$
\mathcal{L}_{\Phi} = (\mathcal{D}_{\mu} \Phi)^{\dagger} \mathcal{D}^{\mu} \Phi - V(\Phi), \qquad \Phi = \begin{pmatrix} \Phi^{+} \\ \Phi^{0} \end{pmatrix}
$$

$$
\mathcal{D}_{\mu} \Phi = \begin{pmatrix} \partial_{\mu} - \frac{i}{2} g \tau \cdot \mathcal{A}_{\mu} - \frac{i}{2} g' B_{\mu} \end{pmatrix} \Phi
$$

$$
V(\Phi) = -\mu^{2} \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^{2} \qquad \mu^{2} > 0
$$

where

- • Gauge principle in Quantum field theory provides framework to study interaction of elementary particles
- •Gauge symmetry severely constraints the mass terms of gauge fields and matter fields.
- •• Higgs mechanism provides a recipe to understand why Ws and Z have masses without spoiling gauge symmetry. spoiling gauge symmetry

 \bullet It is done through the introduction of complex scalar field through $SU(2)_L\times U(1)_Y$ gauge
inverient Legrencien: invariant Lagrangian:

$$
\mathcal{L}_{\Phi} = (\mathcal{D}_{\mu} \Phi)^{\dagger} \mathcal{D}^{\mu} \Phi - V(\Phi), \qquad \Phi = \begin{pmatrix} \Phi^{+} \\ \Phi^{0} \end{pmatrix}
$$

$$
\mathcal{D}_{\mu} \Phi = \begin{pmatrix} \partial_{\mu} - \frac{i}{2} g \tau \cdot \mathcal{A}_{\mu} - \frac{i}{2} g' B_{\mu} \end{pmatrix} \Phi
$$

$$
V(\Phi) = -\mu^{2} \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^{2} \qquad \mu^{2} > 0
$$

where

 \bullet The $SU(2)_L\times U(1)_Y$ invariant Yukawa interaction Lagrangian is given by

$$
\mathcal{L}_Y = Y_e \overline{L} \Phi e_R + Y_u \overline{Q}_L \tilde{\Phi} u_R + Y_d \overline{Q}_L \Phi d_R + h.c
$$

where $\tilde{\Phi} = i \tau_2 \Phi^*$ with $Y(\tilde{\Phi}) =$ −1

Scalar potential μ^2 $2 > 0$ derives the vacuum to have non-zero vacuum expectation value

$$
|<\Omega|\Phi|\Omega>|=\begin{pmatrix}0\\\frac{v}{\sqrt{2}}\end{pmatrix}\qquad v=\sqrt{\frac{\mu^2}{\lambda}}
$$

Scalar potential μ^2 $2 > 0$ derives the vacuum to have non-zero vacuum expectation value

$$
|<\Omega|\Phi|\Omega>|=\begin{pmatrix}0\\\frac{v}{\sqrt{2}}\end{pmatrix}\qquad v=\sqrt{\frac{\mu^2}{\lambda}}
$$

Parameterise $\Phi(x)$ in terms of four real fields $h(x), \zeta^1$ $^{1}(x),\zeta ^{2}$ $^{2}(x),\zeta ^{3}$ $^{3}(x)$ as

$$
\Phi(x) = U^{-1}(\zeta) \begin{pmatrix} 0 \\ \frac{v + h(x)}{\sqrt{2}} \end{pmatrix}, \qquad U(\zeta) = \exp(-i\zeta(x) \cdot \tau/v)
$$

Scalar potential μ^2 $2 > 0$ derives the vacuum to have non-zero vacuum expectation value

$$
|<\Omega|\Phi|\Omega>|=\begin{pmatrix}0\\\frac{v}{\sqrt{2}}\end{pmatrix}\qquad v=\sqrt{\frac{\mu^2}{\lambda}}
$$

Parameterise $\Phi(x)$ in terms of four real fields $h(x), \zeta^1$ $^{1}(x),\zeta ^{2}$ $^{2}(x),\zeta ^{3}$ $^{3}(x)$ as

$$
\Phi(x) = U^{-1}(\zeta) \begin{pmatrix} 0 \\ \frac{v + h(x)}{\sqrt{2}} \end{pmatrix}, \qquad U(\zeta) = \exp(-i\zeta(x) \cdot \tau/v)
$$

such that

$$
<\Omega|\zeta_i|\Omega>=<\Omega|h|\Omega>=0
$$

Scalar potential $\mu^2>0$ derives the vacuum to have non-zero vacuum expectation value

$$
|<\Omega|\Phi|\Omega>|=\begin{pmatrix}0\\\frac{v}{\sqrt{2}}\end{pmatrix}\qquad v=\sqrt{\frac{\mu^2}{\lambda}}
$$

Parameterise $\Phi(x)$ in terms of four real fields $h(x), \zeta^1$ $^{1}(x),\zeta ^{2}$ $^{2}(x),\zeta ^{3}$ $^{3}(x)$ as

$$
\Phi(x) = U^{-1}(\zeta) \begin{pmatrix} 0 \\ \frac{v + h(x)}{\sqrt{2}} \end{pmatrix}, \qquad U(\zeta) = \exp(-i\zeta(x) \cdot \tau/v)
$$

such that

$$
<\Omega|\zeta_i|\Omega>=<\Omega|h|\Omega>=0
$$

The $\zeta_i(x)$ fields can be gauged away by the unitary gauge transformations

$$
\Phi^U=U(\zeta)\Phi=\begin{pmatrix}0\\\frac{v+h(x)}{\sqrt{2}}\end{pmatrix}=\frac{v+h(x)}{\sqrt{2}}\,\,\chi\qquad \ \ \chi=\begin{pmatrix}0\\1\end{pmatrix}
$$

Scalar potential $\mu^2>0$ derives the vacuum to have non-zero vacuum expectation value

$$
|<\Omega|\Phi|\Omega>|=\begin{pmatrix}0\\\frac{v}{\sqrt{2}}\end{pmatrix}\qquad v=\sqrt{\frac{\mu^2}{\lambda}}
$$

Parameterise $\Phi(x)$ in terms of four real fields $h(x), \zeta^1$ $^{1}(x),\zeta ^{2}$ $^{2}(x),\zeta ^{3}$ $^{3}(x)$ as

$$
\Phi(x) = U^{-1}(\zeta) \begin{pmatrix} 0 \\ \frac{v + h(x)}{\sqrt{2}} \end{pmatrix}, \qquad U(\zeta) = \exp(-i\zeta(x) \cdot \tau/v)
$$

such that

$$
<\Omega|\zeta_i|\Omega>=<\Omega|h|\Omega>=0
$$

The $\zeta_i(x)$ fields can be gauged away by the unitary gauge transformations

$$
\Phi^U=U(\zeta)\Phi=\begin{pmatrix}0\\\frac{v+h(x)}{\sqrt{2}}\end{pmatrix}=\frac{v+h(x)}{\sqrt{2}}\,\,\chi\qquad \ \ \chi=\begin{pmatrix}0\\1\end{pmatrix}
$$

- $\bullet \;\; \zeta_i(x)$ are called Goldstone bosons (massless,spinless)
- $\bullet\;h(x)$ is called the Higgs boson.

 \bullet Scalar potential $V(\Phi)$ in the unitary gauge becomes

$$
V(\Phi) = V(h) = \mu^2 h^2 + \lambda v h^3 + \frac{\lambda}{4} h^4
$$

 \bullet Scalar potential $V(\Phi)$ in the unitary gauge becomes

$$
V(\Phi)=V(h)=\mu^2h^2+\lambda vh^3+\frac{\lambda}{4}h^4
$$

The mass of the \bm{h} field (Higgs boson) is given by

$$
m_h^2=2\mu^2=2\lambda v^2
$$

 \bullet Scalar potential $V(\Phi)$ in the unitary gauge becomes

$$
V(\Phi)=V(h)=\mu^2h^2+\lambda vh^3+\frac{\lambda}{4}h^4
$$

The mass of the \bm{h} field (Higgs boson) is given by

$$
m_h^2 = 2\mu^2 = 2\lambda v^2
$$

• The Yukawa part of the Lagrangian in the Unitary gauge is given by

$$
\mathcal{L}_Y = \left(\frac{h(x)+v}{\sqrt{2}}\right) \left(Y_e \overline{e}_L^U e_R^U + Y_u \overline{u}_L^U u_R^U + Y_d \overline{d}_L^U d_R^U\right) + h.c.
$$

 \bullet Scalar potential $V(\Phi)$ in the unitary gauge becomes

$$
V(\Phi)=V(h)=\mu^2h^2+\lambda vh^3+\frac{\lambda}{4}h^4
$$

The mass of the \bm{h} field (Higgs boson) is given by

$$
m_h^2 = 2\mu^2 = 2\lambda v^2
$$

• The Yukawa part of the Lagrangian in the Unitary gauge is given by

$$
\mathcal{L}_Y = \left(\frac{h(x)+v}{\sqrt{2}}\right) \left(Y_e \overline{e}_L^U e_R^U + Y_u \overline{u}_L^U u_R^U + Y_d \overline{d}_L^U d_R^U\right) + h.c.
$$

The fermions masses and their interaction with $h(x)$

$$
m_i = \frac{Y_i v}{\sqrt{2}}
$$
, $i = e, u, d$, $h(x)\overline{Q}Q \Longrightarrow i \frac{m_Q}{v}$ $Q = \tau, b, t$

 \bullet Scalar potential $V(\Phi)$ in the unitary gauge becomes

$$
V(\Phi)=V(h)=\mu^2h^2+\lambda vh^3+\frac{\lambda}{4}h^4
$$

The mass of the \bm{h} field (Higgs boson) is given by

$$
m_h^2 = 2\mu^2 = 2\lambda v^2
$$

• The Yukawa part of the Lagrangian in the Unitary gauge is given by

$$
\mathcal{L}_Y = \left(\frac{h(x)+v}{\sqrt{2}}\right) \left(Y_e \overline{e}_L^U e_R^U + Y_u \overline{u}_L^U u_R^U + Y_d \overline{d}_L^U d_R^U\right) + h.c.
$$

The fermions masses and their interaction with $h(x)$

$$
m_i = \frac{Y_i v}{\sqrt{2}}
$$
, $i = e, u, d$, $h(x)\overline{Q}Q \Longrightarrow i \frac{m_Q}{v}$ $Q = \tau, b, t$

$$
|\mathcal{D}_{\mu}\Phi|^2\;\;\Longrightarrow\;\;\frac{v^2}{8}\left(1+\frac{h(x)}{v}\right)^2\left(g^2\Big[({\mathcal A}^{U1}_{\mu})^2+({\mathcal A}^{U2}_{\mu})^2\Big]+\Big[g{\mathcal A}^{U3}_{\mu}-g'B^U_{\mu})^2\Big]\right)
$$

$$
|\mathcal{D}_{\mu}\Phi|^2 \quad \Longrightarrow \quad \frac{v^2}{8}\left(1+\frac{h(x)}{v}\right)^2\left(g^2\Big[({\mathcal A}_{\mu}^{U1})^2+({\mathcal A}_{\mu}^{U2})^2\Big]+ \Big[g{\mathcal A}_{\mu}^{U3}-g'B_{\mu}^{U})^2\Big]\right)
$$

 W_μ^\pm $Z_\mu^\pm = \frac{1}{\sqrt{2}}({\cal A}_\mu^{U1}\mp i{\cal A}_\mu^{U2}), \hspace{2em} Z_\mu \hspace{2em} = \hspace{2em} \cos\theta_W{\cal A}_\mu^{U3} - \sin\theta_W B_\mu^U \hspace{1em} \theta_W - \text{Weinberg} \hspace{2em} \text{ang}$

$$
A_{\mu} = \sin \theta_W \mathcal{A}_{\mu}^{U3} + \cos \theta_W B_{\mu}^U, \quad \tan \theta_W = \frac{g'}{g},
$$

$$
|\mathcal{D}_{\mu}\Phi|^2 \quad \Longrightarrow \quad \frac{v^2}{8}\left(1+\frac{h(x)}{v}\right)^2\left(g^2\Big[({\mathcal A}_{\mu}^{U1})^2+({\mathcal A}_{\mu}^{U2})^2\Big]+ \Big[g{\mathcal A}_{\mu}^{U3}-g'B_{\mu}^{U})^2\Big]\right)
$$

$$
W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} (\mathcal{A}_{\mu}^{U1} \mp i \mathcal{A}_{\mu}^{U2}), \qquad Z_{\mu} = \cos \theta_W \mathcal{A}_{\mu}^{U3} - \sin \theta_W B_{\mu}^U \qquad \theta_W - \text{Weinberg} \text{ and}
$$

$$
A_{\mu} = \sin \theta_W \mathcal{A}_{\mu}^{U3} + \cos \theta_W B_{\mu}^U, \qquad \tan \theta_W = \frac{g'}{g},
$$

$$
\begin{array}{lll} |\mathcal{D}_{\mu}\Phi|^2 & \Longrightarrow & \displaystyle\frac{1}{2}M_W^2W^+_{\mu}W^{-\mu}\left(1+\frac{h(x)}{v}\right)^2 \\[2mm] & + \displaystyle\left[\frac{1}{2}M_Z^2\ Z^{\mu}Z_{\mu} + \frac{1}{2} \quad \text{``0''} \quad A_{\mu}A^{\mu}\right]\left(1+\frac{h(x)}{v}\right)^2 \end{array}
$$

$$
|\mathcal{D}_{\mu}\Phi|^2 \quad \Longrightarrow \quad \frac{v^2}{8}\left(1+\frac{h(x)}{v}\right)^2\left(g^2\Big[({\mathcal A}_{\mu}^{U1})^2+({\mathcal A}_{\mu}^{U2})^2\Big]+ \Big[g{\mathcal A}_{\mu}^{U3}-g'B_{\mu}^{U})^2\Big]\right)
$$

$$
W^{\pm}_{\mu} = \frac{1}{\sqrt{2}} (\mathcal{A}_{\mu}^{U1} \mp i \mathcal{A}_{\mu}^{U2}), \qquad Z_{\mu} = \cos \theta_W \mathcal{A}_{\mu}^{U3} - \sin \theta_W B_{\mu}^U \qquad \theta_W - \text{Weinberg} \text{ and}
$$

$$
A_{\mu} = \sin \theta_W \mathcal{A}_{\mu}^{U3} + \cos \theta_W B_{\mu}^U, \quad \tan \theta_W = \frac{g'}{g},
$$

$$
|\mathcal{D}_{\mu}\Phi|^{2} \quad \Longrightarrow \quad \frac{1}{2}M_{W}^{2}W_{\mu}^{+}W^{-\mu}\left(1+\frac{h(x)}{v}\right)^{2} + \left[\frac{1}{2}M_{Z}^{2}Z^{\mu}Z_{\mu}+\frac{1}{2} \quad \text{``0''} \quad A_{\mu}A^{\mu}\right]\left(1+\frac{h(x)}{v}\right)^{2}
$$

where the masses of W^\pm,Z,γ bosons:

$$
M_W^2 = \frac{g^2 v^2}{4}
$$
, $M_Z^2 = \frac{v^2}{4}(g^2 + g^{'2})$, $M_\gamma = 0$

The vertices are

$$
h(x)V_{i\mu}V_i^{*\mu} \quad \Longrightarrow \quad 2i\frac{M_i^2}{v}g_{\mu\nu}, \qquad \quad h(x)h(x)V_{i\mu}V_i^{*\mu} \quad \Longrightarrow \quad 2i\frac{M_{V_i}^2}{v^2}g_{\mu\nu}
$$

• Tests of Standard Model of Strong,Electroweak interactions:

 $SU(3)_C~\otimes~SU(2)_L~\otimes~U(1)_Y$

have been incredibly successful.

 \bullet Tests of Standard Model of Strong,Electroweak interactions:

 $SU(3)_C~\otimes~SU(2)_L~\otimes~U(1)_Y$

have been incredibly successful.

- 1) Discovery of all the gauge bosons $(W^{\pm}, Z, gluon)$, all the fermions $(c, b, t, \tau...)$,
- 2) Precise measurements of SM parameters at 0.1% level
effects(α_{max} , $a = 2, m_{W}$, m_{t} effects $(\alpha_{em}, g-2, m_W, m_t, ...)$.

 \bullet Tests of Standard Model of Strong,Electroweak interactions:

 $SU(3)_C~\otimes~SU(2)_L~\otimes~U(1)_Y$

have been incredibly successful.

1) Discovery of all the gauge bosons $(W^{\pm}, Z, gluon)$, all the fermions $(c, b, t, \tau...)$,

- 2) Precise measurements of SM parameters at 0.1% level
effects(α_{max} , $a = 2, m_{W}$, m_{t} effects($\alpha_{em}, g-2, m_W, m_t, ...$).
'4 of this Higgs field, called "would b
- The ³/⁴ of this Higgs field, called "would be Goldstone bosons":

 $w_1(x), w_2(x), z(x)$

reappear as longitudinal components of W^\pm and Z respectively.

•• The remaining $1/4$ is nothing but the Higgs boson, $h(x)$ and it has been observed at the LHC.

 \bullet Tests of Standard Model of Strong,Electroweak interactions:

 $SU(3)_C~\otimes~SU(2)_L~\otimes~U(1)_Y$

have been incredibly successful.

1) Discovery of all the gauge bosons $(W^{\pm}, Z, gluon)$, all the fermions $(c, b, t, \tau...)$,

- 2) Precise measurements of SM parameters at 0.1% level
effects(α_{max} , $a = 2, m_{W}$, m_{t} effects($\alpha_{em}, g-2, m_W, m_t, ...$).
'4 of this Higgs field, called "would b
- The ³/⁴ of this Higgs field, called "would be Goldstone bosons":

 $w_1(x), w_2(x), z(x)$

reappear as longitudinal components of W^\pm and Z respectively.

- •• The remaining $1/4$ is nothing but the Higgs boson, $h(x)$ and it has been observed at the LHC.
- •But this particle has to pass all the tests to be called Higgs Boson of the SM
Standard Model today

 \bullet Tests of Standard Model of Strong,Electroweak interactions:

 $SU(3)_C~\otimes~SU(2)_L~\otimes~U(1)_Y$

have been incredibly successful.

1) Discovery of all the gauge bosons $(W^{\pm}, Z, gluon)$, all the fermions $(c, b, t, \tau...)$,

- 2) Precise measurements of SM parameters at 0.1% level
effects(α_{max} , $a = 2, m_{W}$, m_{t} effects($\alpha_{em}, g-2, m_W, m_t, ...$).
'4 of this Higgs field, called "would b
- The ³/⁴ of this Higgs field, called "would be Goldstone bosons":

 $w_1(x), w_2(x), z(x)$

reappear as longitudinal components of W^\pm and Z respectively.

- •• The remaining $1/4$ is nothing but the Higgs boson, $h(x)$ and it has been observed at the LHC.
- •But this particle has to pass all the tests to be called Higgs Boson of the SM

Standard Model today

 \bullet Tests of Standard Model of Strong,Electroweak interactions:

 $SU(3)_C~\otimes~SU(2)_L~\otimes~U(1)_Y$

have been incredibly successful.

1) Discovery of all the gauge bosons $(W^{\pm}, Z, gluon)$, all the fermions $(c, b, t, \tau...)$,

- 2) Precise measurements of SM parameters at 0.1% level
effects(α_{max} , $a = 2, m_{W}$, m_{t} effects($\alpha_{em}, g-2, m_W, m_t, ...$).
'4 of this Higgs field, called "would b
- The ³/⁴ of this Higgs field, called "would be Goldstone bosons":

 $w_1(x), w_2(x), z(x)$

reappear as longitudinal components of W^\pm and Z respectively.

- •• The remaining $1/4$ is nothing but the Higgs boson, $h(x)$ and it has been observed at the LHC.
- •But this particle has to pass all the tests to be called Higgs Boson of the SM
- ^I will restrict myself to SM higgs in the rest of the talk and discuss the physics that revolves•around it.

Standard Model today

 \bullet Tests of Standard Model of Strong,Electroweak interactions:

 $SU(3)_C~\otimes~SU(2)_L~\otimes~U(1)_Y$

have been incredibly successful.

1) Discovery of all the gauge bosons $(W^{\pm}, Z, gluon)$, all the fermions $(c, b, t, \tau...)$,

- 2) Precise measurements of SM parameters at 0.1% level
effects(α_{max} , $a = 2, m_{W}$, m_{t} effects($\alpha_{em}, g-2, m_W, m_t, ...$).
'4 of this Higgs field, called "would b
- The ³/⁴ of this Higgs field, called "would be Goldstone bosons":

 $w_1(x), w_2(x), z(x)$

reappear as longitudinal components of W^\pm and Z respectively.

- •• The remaining $1/4$ is nothing but the Higgs boson, $h(x)$ and it has been observed at the LHC.
- •But this particle has to pass all the tests to be called Higgs Boson of the SM
- ^I will restrict myself to SM higgs in the rest of the talk and discuss the physics that revolves•around it.

• Longitudinal polarisation of W s and Z s spoil high energy behaviour of gauge theories without Higgs boson.

- \bullet • Longitudinal polarisation of W s and Z s spoil high energy behaviour of gauge theories without Higgs boson.
- When $s \gg M_W^2, m_h^2,$ a₀ $\rightarrow -m_h^2/(8\pi v^2)$ $\left|-\frac{m_h^2}{8\pi v^2}\right|\leq \frac{1}{2}\;\;\implies\;\; m_h < 2v\sqrt{\pi} = 870 GeV \;\;\;\;\; \text{combined with} \;\;\; \text{Z}\Longrightarrow \;\;\;710\ GeV$

- •• Longitudinal polarisation of W s and Z s spoil high energy behaviour of gauge theories without Higgs boson.
- When $s \gg$ $\gg M_W^2, m_h^2, \qquad a_0 \to -m_h^2/(8\pi v^2),$ $\left|-\frac{m_h^2}{8\pi v^2}\right|\leq \frac{1}{2}\;\;\implies\;\; m_h < 2v\sqrt{\pi} = 870 GeV \;\;\;\;\; \text{combined with} \;\;\; \text{Z}\Longrightarrow \;\;\;710\ GeV$
- Finiteness of λ coupling upto a cut off scale of the theory: Droping gauge and Yukawa contributions,

$$
\lambda(Q^2)=\frac{\lambda(Q^2_0)}{1-\frac{3}{4\pi^2}\lambda(Q^2_0)\log\frac{Q^2}{Q^2_0}}
$$

- •• Longitudinal polarisation of W s and Z s spoil high energy behaviour of gauge theories without Higgs boson.
- When $s \gg M_W^2$ $\frac{m^2}{W}, m^2_h, \qquad a_0 \rightarrow -m^2_h/(8\pi v^2),$ $\left|-\frac{m_h^2}{8\pi v^2}\right|\leq \frac{1}{2}\;\;\implies\;\; m_h < 2v\sqrt{\pi} = 870 GeV \;\;\;\;\; \text{combined with} \;\;\; \text{Z}\Longrightarrow \;\;\;710\ GeV$
- Finiteness of λ coupling upto a cut off scale of the theory: Droping gauge and Yukawa contributions,

$$
\lambda(Q^2) = \frac{\lambda(Q^2_0)}{1-\frac{3}{4\pi^2}\lambda(Q^2_0)\log\frac{Q^2}{Q^2_0}}
$$

•• The Landau pole gives the scale $\mathbf{\Lambda}_P$ given by (choose $Q = \Lambda_P, Q_0 = v$)

$$
\Lambda_P = v \exp\left(\frac{2\pi^2}{3\lambda(v^2)}\right) = v \exp\left(\frac{4\pi^2 v^2}{3m_h^2}\right)
$$

- •• Longitudinal polarisation of W s and Z s spoil high energy behaviour of gauge theories without Higgs boson.
- When $s \gg M_W^2$ $\frac{m^2}{W}, m^2_h, \qquad a_0 \rightarrow -m^2_h/(8\pi v^2),$ $\left|-\frac{m_h^2}{8\pi v^2}\right|\leq \frac{1}{2}\;\;\implies\;\; m_h < 2v\sqrt{\pi} = 870 GeV \;\;\;\;\; \text{combined with} \;\;\; \text{Z}\Longrightarrow \;\;\;710\ GeV$
- Finiteness of λ coupling upto a cut off scale of the theory: Droping gauge and Yukawa contributions,

$$
\lambda(Q^2)=\frac{\lambda(Q^2_0)}{1-\frac{3}{4\pi^2}\lambda(Q^2_0)\log\frac{Q^2}{Q^2_0}}
$$

•• The Landau pole gives the scale $\mathbf{\Lambda}_P$ given by (choose $Q = \Lambda_P, Q_0 = v$)

$$
\Lambda_P = v \exp\left(\frac{2\pi^2}{3\lambda(v^2)}\right) = v \exp\left(\frac{4\pi^2 v^2}{3m_h^2}\right)
$$

- If $\Lambda_P = 10^{19}$ GeV, the higgs has to be light $m_h \leq 145$ GeV.
- If $\Lambda_P = 10^3$ GeV, the higgs has to be heavy $m_h \le 750$ GeV.

Precision measurements and top mass

Precision measurements and top mass

• Longitudinal polarisations of W s and Z can give new UV divergences which can not be repertient away without Higgs field renormalised away without Higgs field.

• Longitudinal polarisations of W s and Z can give new UV divergences which can not be repertient away without Higgs field renormalised away without Higgs field.

• Quantum corrections modify tree level relations among gauge masses and gauge couplings:

$$
G_F = \frac{\pi \alpha_{em}}{\sqrt{2} M_W^2 (1 - M_W^2/M_Z^2)} \Big(1 - \Delta \rho \Big)^{-1}
$$

$$
\Delta\rho_{top}=-\frac{3G_Fm_t^2}{8\sqrt{2}\pi^2}\cot^2(\theta_W),\qquad\qquad \Delta\rho_W=\frac{11G_FM_W^2}{24\sqrt{2}\pi^2}\log\left(\frac{m_h^2}{M_W^2}\right)
$$

• Longitudinal polarisations of W s and Z can give new UV divergences which can not be repertient away without Higgs field renormalised away without Higgs field.

• Quantum corrections modify tree level relations among gauge masses and gauge couplings:

$$
G_F = \frac{\pi \alpha_{em}}{\sqrt{2} M_W^2 (1 - M_W^2/M_Z^2)} \Big(1 - \Delta \rho \Big)^{-1}
$$

$$
\Delta \rho_{top} = -\frac{3G_F m_t^2}{8\sqrt{2}\pi^2} \cot^2(\theta_W), \qquad \qquad \Delta \rho_W = \frac{11G_F M_W^2}{24\sqrt{2}\pi^2} \log\left(\frac{m_h^2}{M_W^2}\right)
$$

• Precision measurements can give bounds on Higgs boson mass.

• Longitudinal polarisations of W s and Z can give new UV divergences which can not be repertient away without Higgs field renormalised away without Higgs field.

• Quantum corrections modify tree level relations among gauge masses and gauge couplings:

$$
G_F = \frac{\pi \alpha_{em}}{\sqrt{2} M_W^2 (1 - M_W^2/M_Z^2)} \Big(1 - \Delta \rho \Big)^{-1}
$$

$$
\Delta \rho_{top} = -\frac{3G_F m_t^2}{8\sqrt{2}\pi^2} \cot^2(\theta_W), \qquad \qquad \Delta \rho_W = \frac{11G_F M_W^2}{24\sqrt{2}\pi^2} \log\left(\frac{m_h^2}{M_W^2}\right)
$$

- Precision measurements can give bounds on Higgs boson mass.
- \bullet Bounds are sensitive to top quark mass m_t

• NNLO computation of various couplings in the SM by Degrassi et.al:

$$
m_h~\geq~129.2+1.8\times\left(\frac{m_t^{\rm pole}-173.2~{\rm GeV}}{0.9~{\rm GeV}}\right)-0.5\times\left(\frac{\alpha_s(M_Z)-0.1184}{0.0007}\right)\pm1.0~{\rm GeV}\,.
$$

• NNLO computation of various couplings in the SM by Degrassi et.al:

$$
m_h~\geq~129.2 + 1.8 \times \left(\frac{m_t^{\rm pole} - 173.2~{\rm GeV}}{0.9~{\rm GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0~{\rm GeV}\,.
$$

 $\bullet m_t$ dependence:

$$
\Delta m_t = 1 \, GeV \qquad \longrightarrow \qquad \Delta m_h = \pm 2 \, GeV
$$

2 σ variation of the top quark mass allows the upper bound m_h \geq 125.6 GeV.

• NNLO computation of various couplings in the SM by Degrassi et.al:

$$
m_h~\geq~129.2 + 1.8 \times \left(\frac{m_t^{\rm pole} - 173.2~{\rm GeV}}{0.9~{\rm GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0~{\rm GeV}\,.
$$

 $\bullet m_t$ dependence:

 $\Delta m_t = 1 \text{ GeV}$ \longrightarrow $\Delta m_h = \pm 2 \text{ GeV}$

2 σ variation of the top quark mass allows the upper bound $m_h \geq 125.6$ GeV.

• Top quark production measurements at Tevatron and NNLO (approx) results give (Alekhin et al):

$$
m_t^{\overline{\rm MS}}(m_t)\,=\,163.3\pm2.7~{\rm GeV}\qquad\longrightarrow\qquad m_t^{\rm pole}\,=\,173.3\pm2.8~{\rm GeV}\,,
$$

The upper bound for vacuum stability can be realized

$$
m_h\,\geq\,129.4\pm5.6\>{\rm GeV}\,,
$$

consistent with the recent measurements by ATLAS and CMS thanks to larger error.

• NNLO computation of various couplings in the SM by Degrassi et.al:

$$
m_h~\geq~129.2 + 1.8 \times \left(\frac{m_t^{\rm pole} - 173.2~{\rm GeV}}{0.9~{\rm GeV}}\right) - 0.5 \times \left(\frac{\alpha_s(M_Z) - 0.1184}{0.0007}\right) \pm 1.0~{\rm GeV}\,.
$$

 $\bullet m_t$ dependence:

 $\Delta m_t = 1 \text{ GeV}$ \longrightarrow $\Delta m_h = \pm 2 \text{ GeV}$

2 σ variation of the top quark mass allows the upper bound $m_h \geq 125.6$ GeV.

• Top quark production measurements at Tevatron and NNLO (approx) results give (Alekhin et al):

$$
m_t^{\overline{\rm MS}}(m_t) \, = \, 163.3 \pm 2.7~{\rm GeV} \qquad \longrightarrow \qquad m_t^{\rm pole} \, = \, 173.3 \pm 2.8~{\rm GeV} \,,
$$

The upper bound for vacuum stability can be realized

$$
m_h \, \geq \, 129.4 \pm 5.6 \, \mathrm{GeV} \, ,
$$

consistent with the recent measurements by ATLAS and CMS thanks to larger error.

• Global average has small error

$$
m_t^{\text{exp}} = 173.2 \pm 0.9 \text{ GeV}.
$$

which can give stringiant condition on vacuum stability with small error on the higgs mass.

- \bullet • λ is sensitive to top mass
- \bullet Stability of vacuum can be answered only if the error on the top mass goes downsignificantly.
- e^+e^- machine can give better measurement of top mass

[Summer 2004, LEPEWWG]

[Summer 2004, LEPEWWG]

Direct:

 $m_h > 114.4 \text{ GeV}$

[Summer 2004, LEPEWWG]

Direct:

 $m_h > 114.4 \text{ GeV}$

 $m_h > 114.4 \text{ GeV}$

Direct:

- LEP is a e^+e^- collider with $\sqrt{s}=209$ GeV
- Primary search mode $e^+e^- \to hZ$
- On-shell higgs can be produced if themass of the higgs is less than $\sqrt{s}-M_Z=118$ GeV
- Low statistics and insufficient energyavailable give the lower bound $m_h > 114.4 \text{ GeV}$.

[Summer 2004, LEPEWWG]

 $m_h < 260~GeV~(~95\%~CL)$

$$
\Delta\chi^2(m_h,x)=\chi^2(m_h,x)-\chi^2_{min}
$$

- \bullet $\Delta \chi^2$ $<$ $(1.96)^2$ gives 95% CL
allowed mass range for biggs ma allowed mass range for higgs mass m_h .
- $m_h = 114.4^{+69}_{-45}$ GeV at 95% CL. $m_h < 260~GeV~(~95\%~CL)$

 $114.4 < m_h < 260$ GeV at 95% CL.

Winter 2011: Combined Tevatron updates

Data of $8.3 fb^{-1}$ exclude Higgs of mass in $158 < m_H < 173\ GeV/c^2$ at 95% CL.

Winter 2011: Combined Tevatron updates

Data of $8.3 fb^{-1}$ exclude Higgs of mass in $158 < m_H < 173\ GeV/c^2$ at 95% CL.

Higgs Production at the LHC (8 ^T eV**)**

Higgs Production at the LHC (8 ^T eV**)**

First three productions are known to NNLO level in QCD• the last one is known only upto NLO level.

Width of the Higgs boson

Width of the Higgs boson

Width of the Higgs boson

Width of the light Higgs boson is very small and hence the interference effects are negligible $\sigma(P_1P_2 \to H \to X) = \sigma(P_1P_2 \to H)BR(H \to X)$
Width of the Higgs boson

Width of the light Higgs boson is very small and hence the interference effects are negligible

$$
\sigma(P_1P_2 \to H \to X) = \sigma(P_1P_2 \to H)BR(H \to X)
$$

Mass resolution in $\gamma\gamma$ and ZZ channels is very good.

- \bullet To exclude something we need to understand the signal well
- \bullet To discover something we need to understand the background well R.Harlander

 $P_1 + P_2 \rightarrow higgs + X$

 $P_1 + P_2 \rightarrow higgs + X$

 $2S d\sigma$ $\boldsymbol{P_{1}}$ $\boldsymbol{P_2}$ $^{\prime 2}$ $(\tau,m$ 2 \bm{h} $) =$ $\sum_{\bm{a}\bm{b}}$ f_{a/P_1} $(\boldsymbol{\tau}, \boldsymbol{\mu}$ \boldsymbol{F}) ⊗ f_{b/P_2} $(\boldsymbol{\tau}, \boldsymbol{\mu}$ \boldsymbol{F} $)\otimes 2\hat{s}\: d\hat{\sigma}^{ab}\left(\tau,m\right)$ 2 \bar{h} , μ \boldsymbol{F} \bm{F}), $\bm{\tau}$ = \boldsymbol{m} 2 \bm{h} \boldsymbol{S}

 $P_1 + P_2 \rightarrow higgs + X$

$$
2S\ d\sigma^{P_1P_2}\left(\tau,m_h^2\right)=\sum_{ab}f_{a/P_1}\left(\tau,\mu_F\right)\otimes f_{b/P_2}\left(\tau,\mu_F\right)\otimes 2\hat{s}\ d\hat{\sigma}^{ab}\left(\tau,m_h^2,\mu_F\right),\qquad \tau=\frac{m_h^2}{S}
$$

 $P_1 + P_2 \rightarrow higgs + X$

 $2S d\sigma$ $\boldsymbol{P_{1}}$ $\boldsymbol{P_2}$ $^{\prime 2}$ (τ,m_h^2) $\binom{2}{h} =$ $\sum_{\bm{a}\bm{b}}$ f_{a/P_1} $(\boldsymbol{\tau}, \boldsymbol{\mu}$ \boldsymbol{F} $)\otimes f_{b/P_2}$ $(\boldsymbol{\tau}, \boldsymbol{\mu}$ \boldsymbol{F} $)\otimes 2\hat{s}\: d\hat{\sigma}^{ab}\left(\tau,m_h^2\right)$ \bar{h} , μ \boldsymbol{F} \bm{F}), $\bm{\tau}$ = \boldsymbol{m} 2 \bm{h} \boldsymbol{S}

Extraction of non-perturbative functions:

- • ${f_{a}}\!\left(x \right)$ are parton distribution functions inside the hadron P .
- Non-perturbative in nature and process independent.•

 $P_1 + P_2 \rightarrow higgs + X$

$$
2S d\sigma^{P_1P_2}\left(\tau,m_h^2\right)=\sum_{ab} f_{a/P_1}\left(\tau,\mu_F\right)\otimes f_{b/P_2}\left(\tau,\mu_F\right)\otimes 2\hat{s}\,d\hat{\sigma}^{ab}\left(\tau,m_h^2,\mu_F\right),\qquad \tau=\frac{m_h^2}{S}
$$

 Ω

Extraction of non-perturbative functions:

- \bullet ${f_{a}}\!\left(x \right)$ are parton distribution functions inside the hadron P .
- Non-perturbative in nature and process independent. \bullet

Large Perturbative corrections:

- \bullet $\hat{\sigma}_{ab}$ are the partonic cross sections.
- \bullet Perturbatively calculable.

 $P_1 + P_2 \rightarrow higgs + X$

$$
2S d\sigma^{P_1P_2}\left(\tau,m_h^2\right)=\sum_{ab} f_{a/P_1}\left(\tau,\mu_F\right)\otimes f_{b/P_2}\left(\tau,\mu_F\right)\otimes 2\hat{s}\,d\hat{\sigma}^{ab}\left(\tau,m_h^2,\mu_F\right),\qquad \tau=\frac{m_h^2}{S}
$$

 Ω

Extraction of non-perturbative functions:

- \bullet ${f_{a}}\!\left(x \right)$ are parton distribution functions inside the hadron P .
- Non-perturbative in nature and process independent. \bullet

Large Perturbative corrections:

- \bullet $\hat{\sigma}_{ab}$ are the partonic cross sections.
- \bullet Perturbatively calculable.

PDF from LHC

[Martin,Roberts,Stirling,Thorne]

PDF from LHC

[Martin,Roberts,Stirling,Thorne]

• MSTW, ABM and NNPDF come with different PDF sets with different choices of α_s, m_c, m_b

PDF from LHC

[Martin,Roberts,Stirling,Thorne]

 \bullet MSTW, ABM and NNPDF come with different PDF sets with different choices of α_s, m_c, m_b

 \bullet Choice of PDF set can bring in significant uncertainty of the order 10 to 20%

$$
2S d\sigma^{P_1P_2}(\tau,m_h^2) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}(x,\mu_F) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x},m_h^2,\mu_F\right)
$$

$$
2S d\sigma^{P_1P_2}(\tau,m_h^2) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}(x,\mu_F) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x},m_h^2,\mu_F\right)
$$

$$
2S d\sigma^{P_1P_2}\left(\tau,m_h^2\right)=\sum_{ab}\int_{\tau}^1\frac{dx}{x}\Phi_{ab}\left(x,\mu_F\right)2\hat{s}\,d\hat{\sigma}^{ab}\left(\frac{\tau}{x},m_h^2,\mu_F\right)
$$

 \bullet $d\hat{\sigma}^{ab}$ is perturbatively computable as a power series in $\alpha_s(\mu_R)$, where μ_R is the

renormalisation scale.

$$
d\hat{\sigma}^{ab}\left(\mu_{F}\right)=\alpha_{s}^{d}(\mu_{R})\underset{i=0}{\sum}\alpha_{s}^{i}(\mu_{R})d\hat{\sigma}^{ab,(i)}\left(\mu_{F},\mu_{R}\right)
$$

• Renormalisation group equation:

$$
\mu_R^2 \frac{d}{d\mu_R^2} \alpha_s(\mu_R) = \beta \left(\alpha_s(\mu_R) \right)
$$

 \bullet Fixed order results are often sensitive to μ_R . \bullet Many new production channels open up beyond LO.

$$
2S d\sigma^{PP}(x,m_h) = \int_x^1 \frac{dz}{z} \Phi_{gg}^{(0)}(z,m_h,\mu_F) 2\hat{s} d\hat{\sigma}_{gg}^{(0)}\left(\frac{x}{z},m_h^2,\mu_R\right) + \cdots
$$

- •• Leading order is uncontrolable due to μ_R scale and can not be used for any study in the present form present form.
- •Only higher order corrections can provide sensible result thanks to RG equation

$$
\mu^2 \frac{d}{d\mu^2} \sigma = 0
$$

 $m_H/2 < \mu_F=\mu_R < 2 m_H$

 $m_H/2 < \mu_F=\mu_R < 2 m_H$

 $m_H/2 < \mu_F=\mu_R < 2 m_H$

$$
2S d\sigma^{P_1 P_2}(\tau, m_H) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}(x) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_H\right) \qquad \tau = \frac{m_H^2}{S}
$$

$$
2S d\sigma^{P_1 P_2}(\tau, m_H) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}(x) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_H\right) \qquad \tau = \frac{m_H^2}{S}
$$

$$
2S d\sigma^{P_1 P_2}(\tau, m_H) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}(x) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_H\right) \qquad \tau = \frac{m_H^2}{S}
$$

$$
2S d\sigma^{P_1 P_2}(\tau, m_H) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}(x) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_H\right) \qquad \tau = \frac{m_H^2}{S}
$$

- • \bullet $\Phi_{ab}(x)$ becomes large when $x\rightarrow x_{min}=\tau$
- \bullet Dominant contribution to Higgs productioncomes from the region when $x \rightarrow \tau$

$$
2S d\sigma^{P_1 P_2}(\tau, m_H) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}(x) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_H\right) \qquad \tau = \frac{m_H^2}{S}
$$

- • \bullet $\Phi_{ab}(x)$ becomes large when $x\rightarrow x_{min}=\tau$
- \bullet Dominant contribution to Higgs productioncomes from the region when $x \rightarrow \tau$
- \bullet It is sufficient if we know the partonic crosssection when $x \rightarrow \tau$

$$
2S d\sigma^{P_1 P_2}(\tau, m_H) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}(x) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_H\right) \qquad \tau = \frac{m_H^2}{S}
$$

Soft gluons dominate!

S.Catani,P.Nason,M.Grazzini,D.DeFlorian;R.Harlander,B.Kilgore;E.Laenen,L.Magnea,Moch,Vogt,VR

$$
2S d\sigma^{P_1 P_2}(\tau, m_H) = \sum_{ab} \int_{\tau}^1 \frac{dx}{x} \Phi_{ab}(x) 2\hat{s} d\hat{\sigma}^{ab} \left(\frac{\tau}{x}, m_H\right) \qquad \tau = \frac{m_H^2}{S}
$$

2-loop Electroweak, Mixed QCD and Electroweak, b **quark contributions:**

U.Aglietti et al;G.Degrassi,F.Maltoni;G.Passarino et al;Anastasiou et al;W.Keung,F.Petriello,O.Brein

2-loop Electroweak, Mixed QCD and Electroweak, b **quark contributions:**

U.Aglietti et al;G.Degrassi,F.Maltoni;G.Passarino et al;Anastasiou et al;W.Keung,F.Petriello,O.Brein

2-loop Electroweak, Mixed QCD and Electroweak, b **quark contributions:**

U.Aglietti et al;G.Degrassi,F.Maltoni;G.Passarino et al;Anastasiou et al;W.Keung,F.Petriello,O.Brein

Pure QCD processes interference with Electroweak Processes:

Electroweak: 5%($m_H = 120$ Gev) and -2% ($m_H = 300$ GeV); b quark loops contribute
5 $-$ 6% at $m_H = 120$ GeV at LHC. $5-6\%$ at $m_H = 120$ GeV at LHC

Ahrens,Becher,Neubert,Yang:

- NLO with exact top quark mass contributions,
- NNLO in the large top quark mass limit,
- EW corrections given by Passarino et al
- \bullet use exact solutions to the RGequations of soft,collinear and hard pieces of the cross section.

Good perturbative stability from LO onwards.

Ahrens,Becher,Neubert,Yang:

- NLO with exact top quark mass contributions,
- NNLO in the large top quark mass limit,
- • EW corrections given by Passarino et al
- \bullet use exact solutions to the RGequations of soft,collinear and hard pieces of the cross section.

μ_{R}, μ_{F} and PDF dependence in Higgs production (8 TeV)

MSTW PDF set (σ in pb and errors(\pm) in %): $VR, J. Smith$

μ_{R}, μ_{F} and PDF dependence in Higgs production (8 TeV)

MSTW PDF set (σ in pb and errors(\pm) in %): $VR, J. Smith$

μ_{R}, μ_{F} and PDF dependence in Higgs production (8 TeV)

Uncertainty in NNLO result:

- $\bullet~~ \mu_R$ variation $(m_h/2 < \mu_R < 2m_h)$ gives 11%
- $\bullet~~ \mu_R$ variation $(m_h/3 < \mu_R < 3m_h)$ gives 17%
- $\bullet~~ \mu_F$ variation $(m_h/2 < \mu_R < 2m_h)$ gives 0.5%
- $\mu_R = \mu_F = 1/2m_h$ resummes soft gluons
- MSTW PDF gives 3%
- $\bullet~~ N^3LO_{sv}$ gives around 3%

PDF dependence in Higgs production (8 ^T eV**)**

PDF dependence in Higgs production (8 ^T eV**)**

Differnet PDF sets $(\boldsymbol{m}_{{\boldsymbol{h}}}$ in GeV and cross sections in pb): \quad $VR, \; J. \; Smith$

PDF dependence in Higgs production (8 ^T eV**)**

- ABM is 7.4% smaller than MSTW
• CT is just 0.5% smaller than MST
- CT is just 0.5% smaller than MSTW \bullet
- NNPDF is 5% larger than MSTW
- \bullet • All PDFs give almost same results for N^3LO_{sv} corrected cross section.

 $R =$ $\frac{\sigma_{NiLO}(\mu)}{\sigma_{NiLO}(\mu_0)}$

$$
R = \frac{\sigma_{N^{i}LO}(\mu)}{\sigma_{N^{i}LO}(\mu_0)}
$$

- \bullet • NLO increases the cross section by 80% ,
- \bullet • NNLO to 30% ,
- \bullet • resummation to 10% and electoweak effects by 5%

Update-1: Anastasiou-Boughezal-Petriello-Stoeckli:

Update-1: Anastasiou-Boughezal-Petriello-Stoeckli:

- Exact NLO cross section with full dependence on the top- and bottom-quark masses
- $\bullet\;$ NNLO cross section-Effective Field Theory, i.e., in the large- m_t limit
- \bullet EW contributions evaluated in the complete factorization scheme

$$
\sigma = \sum_{i=0}^{\infty} \alpha_s^i \sigma_{QCD}^{(i)} \otimes (1+\delta_{EW})
$$

- \bullet Mixed QCD-EWcontributions are also accounted for, together with some effects from EWcorrections at finite transverse momentum.
- \bullet The effect of soft-gluon resummation is mimicked by choosing the central value of therenormalization and factorization scales as $\mu_R=\mu_F=M_H/2.$

Update-2: de Florian-Grazzini:

Update-2: de Florian-Grazzini:

- Exact NLO cross section with full dependence on the top- and bottom-quark masses, computed with the program HIGLU,
- the NLL resummation of soft-gluons,
- the NNLL+NNLO corrections are consistently added in the large-mt limit
- corrected for EW contributions in the complete factorization scheme.
- \bullet The central value of factorization and renormalization scales is chosen to be $\mu_F=\mu_R=M_H$

Comparison

Final numbers for gluon fusion for m_h $h = 125$ GeV

Final numbers for gluon fusion for m_h $h = 125$ GeV

Production cross section at $\sqrt{s}=7$ TeV with $\text{scale}(\mu_R=\mu_F)$ and $\mathsf{PDF}(+\alpha_s)$ unctertainties:

$$
\sigma = 15.31^{11.7\%}_{-7.8\%}(scale)^{+7.8\%}_{-7.3\%}(PDF + \alpha_s)pb
$$

Production cross section at $\sqrt{s} = 8$ TeV:

• de Florian et al:

$$
\sigma = 19.52^{7.2\%}_{-7.8\%} \text{(scale)}^{+7.5\%}_{-6.9\%} \text{(PDF + } \alpha_{\rm s}) pb
$$

• Anastasiou et al:

$$
\sigma = 20.69^{8.4\%}_{-9.3\%} \text{(scale)}^{+7.8\%}_{-7.5\%} \text{(PDF + } \alpha_{\rm s}) pb
$$

Anastasiou et.al

Anastasiou et.al

• Square of one-loop virtuals to N^3LO

$$
g(p_1) + g(p_2) \rightarrow g(p_3) + H(p_4)
$$

\n
$$
q(p_1) + g(p_2) \rightarrow q(p_3) + H(p_4)
$$

\n
$$
q(p_1) + \bar{q}(p_2) \rightarrow g(p_3) + H(p_4)
$$

Anastasiou et.al

• Square of one-loop virtuals to N^3LO

 $g(p_1) + g(p_2) \rightarrow g(p_3) + H(p_4)$ $q(p_1) + g(p_2) \rightarrow q(p_3) + H(p_4)$ $q(p_1) + \bar{q}(p_2) \rightarrow g(p_3) + H(p_4)$

• Performing ^a loop-expansion of the amplitudes

$$
\mathcal{A}_X = \sum_{j=0}^\infty \mathcal{A}_X^{(j)}
$$

in the effective theory with \bm{j} being the number of loops, we have:

$$
\left|\mathcal{A}_X\right|^2=\left|\mathcal{A}_X^{(0)}\right|^2+2\Re\left(\mathcal{A}_X^{(0)}{\mathcal{A}_X^{(1)}}^*\right)+\left[\left|\mathcal{A}_X^{(1)}\right|^2+2\Re\left(\mathcal{A}_X^{(0)}{\mathcal{A}_X^{(2)}}^*\right)\right]+ \ldots
$$

Anastasiou et.al

• Square of one-loop virtuals to N^3LO

 $g(p_1) + g(p_2) \rightarrow g(p_3) + H(p_4)$ $q(p_1) + g(p_2) \rightarrow q(p_3) + H(p_4)$ $q(p_1) + \bar{q}(p_2) \rightarrow g(p_3) + H(p_4)$

• Performing ^a loop-expansion of the amplitudes

$$
\mathcal{A}_X = \sum_{j=0}^\infty \mathcal{A}_X^{(j)}
$$

in the effective theory with \bm{j} being the number of loops, we have:

$$
|\mathcal{A}_X|^2 = \left|\mathcal{A}_X^{(0)}\right|^2 + 2\Re\left(\mathcal{A}_X^{(0)}{\mathcal{A}_X^{(1)}}^*\right) + \left[\left|\mathcal{A}_X^{(1)}\right|^2 + 2\Re\left(\mathcal{A}_X^{(0)}{\mathcal{A}_X^{(2)}}^*\right)\right] + \dots
$$

$$
\sigma_X^{1\otimes 1} = s^{-1-\varepsilon} \, \frac{\mathcal{N}_X\,(4\pi)^\varepsilon}{16\pi\,\Gamma(1-\varepsilon)}\, \delta^{1-2\varepsilon}\, \int_0^1 d\lambda\,[\lambda\,(1-\lambda)]^{-\varepsilon}\,\sum \left|\mathcal{A}^{(1)}_X\right|^2\,.
$$

Anastasiou et.al

• Square of one-loop virtuals to N^3LO

 $g(p_1) + g(p_2) \rightarrow g(p_3) + H(p_4)$ $q(p_1) + g(p_2) \rightarrow q(p_3) + H(p_4)$ $q(p_1) + \bar{q}(p_2) \rightarrow g(p_3) + H(p_4)$

• Performing ^a loop-expansion of the amplitudes

$$
\mathcal{A}_X = \sum_{j=0}^\infty \mathcal{A}_X^{(j)}
$$

in the effective theory with \bm{j} being the number of loops, we have:

$$
\left|\mathcal{A}_X\right|^2=\left|\mathcal{A}_X^{(0)}\right|^2+2\Re\left(\mathcal{A}_X^{(0)}{\mathcal{A}_X^{(1)}}^*\right)+\left[\left|\mathcal{A}_X^{(1)}\right|^2+2\Re\left(\mathcal{A}_X^{(0)}{\mathcal{A}_X^{(2)}}^*\right)\right]+ \ldots
$$

$$
\sigma_X^{1\otimes 1}=s^{-1-\varepsilon}\,\frac{\mathcal{N}_X\,(4\pi)^\varepsilon}{16\pi\,\Gamma(1-\varepsilon)}\,\delta^{1-2\varepsilon}\,\int_0^1d\lambda\,[\lambda\,(1-\lambda)]^{-\varepsilon}\,\sum\left|\mathcal{A}^{(1)}_X\right|^2\,.
$$

- •Reverse Unitarity and Integration parts lead to ¹⁹ master integrals
- •Differential equation method is used to solve the master integrals

Alternate approach towards N^3LO

Kilgore

Alternate approach towards N^3LO

Kilgore

- Threshold expansion
- • Square of the one-loop contribution to the cross section as an extended thresholdexpansion.
- \bullet Obtain enough terms to invert the series and determine the closed functional form throughorder $\varepsilon.$
- \bullet The method has been applied to get earlier results at NLO and NNLO level for inclusivecross sections in closed form, in terms of G-functions and the hypergeometric functions $2F_1$ and $3F_2$.
- \bullet **•** These functions can be readily expanded to all orders in ε

Alternate approach towards N^3LO

Kilgore

- Threshold expansion
- • Square of the one-loop contribution to the cross section as an extended thresholdexpansion.
- \bullet Obtain enough terms to invert the series and determine the closed functional form throughorder $\varepsilon.$
- \bullet The method has been applied to get earlier results at NLO and NNLO level for inclusivecross sections in closed form, in terms of G-functions and the hypergeometric functions $2F_1$ and $3F_2$.
- \bullet **•** These functions can be readily expanded to all orders in ε

$$
2F_1(1,-\varepsilon;1-\varepsilon;-xy/\overline{y})=\sum_{n=0}^\infty\frac{\overline{x}}{n!}\frac{(-\varepsilon)_n}{n!}\left(2F_1(1,-\varepsilon,1-\varepsilon,-y/\overline{y})-\overline{y}\sum_{m=0}^{n-1}y^m\frac{m!}{(1-\varepsilon)_m}\right)
$$

H. van Deurzen et al.

Higgs ⁺ 2 jets at NLO

Higgs ⁺ 2 jets at NLO

 \bullet \bullet Transverse momentum p_{T} of the first and the second jet.

$$
\sigma_{\text{LO}}[\text{pb}] = 1.90^{+0.58}_{-0.41}\,, \qquad \ \ \sigma_{\text{NLO}}[\text{pb}] = 2.90^{+0.05}_{-0.20}\,,
$$

 \bullet Scale variation:

$$
\frac{1}{2}\hat{H}_t < \mu < 2\hat{H}_t\,.
$$

Higgs ⁺ 3-jets in gluon-gluon fusion

G. Cullen et al.

Higgs ⁺ 3-jets in gluon-gluon fusion

Higgs ⁺ 3-jets in gluon-gluon fusion

- \bullet • Jets are clustered using the anti- k_t -algorithm implemented in FastJet with radius $R = 0.5$
and a minimum transverse momentum of $n_{\rm max} \sim 20$ GeV and pseudorapidity $|n| < 4$ G and a minimum transverse momentum of $p_{T,jet} > 20$ GeV and pseudorapidity $|\eta| < 4.0$.
- •The renormalization and factorization scales are set to

$$
\mu_F = \mu_R = \frac{\hat{H}_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_{T,H}^2} + \sum_i |p_{T,i}| \right) \,,
$$

 \bullet The strong coupling is therefore evaluated at different scales according to α^{5} $_s^5\rightarrow \alpha_s^2$ $_s^2(m_H)\alpha_s^3$ $_{s}^{3}(\hat{H}_{T}/2).$

Higgs ⁺ 3-jets via vector boson fusion (VBF)

F. Campanario et al.

Higgs ⁺ 3-jets via vector boson fusion (VBF)

F. Campanario et al.

- • Higgs production via Vector Boson Fusion (VFB) can disentangle the Higgs boson's couplingto fermionns and gauge bosons.
- • Taging two jets with Higgs and vetoing soft jets in the central region can significantly reducethe QCD background as well as Higgs plus two jets from gluon-gluon fusion.
- •Ratio of Higgs+3 jets to Higgs+2 jets need to known accurately.

Method:

- • Spin helicity package MATCHBOX provides real emission amplitudes, spin summation, subtraction terms for IR singularities
- •ColorFull and ColurMath packages to do color algebra
- • Passarino-Veltman reduction and Denner-Dittmaier scheme to do one-loop reduction and evaluation.

Higgs ⁺ 3-jets via vector boson fusion (VBF)

F. Campanario et al.

- • Higgs production via Vector Boson Fusion (VFB) can disentangle the Higgs boson's couplingto fermionns and gauge bosons.
- • Taging two jets with Higgs and vetoing soft jets in the central region can significantly reducethe QCD background as well as Higgs plus two jets from gluon-gluon fusion.
- •Ratio of Higgs+3 jets to Higgs+2 jets need to known accurately.

Method:

- • Spin helicity package MATCHBOX provides real emission amplitudes, spin summation, subtraction terms for IR singularities
- •ColorFull and ColurMath packages to do color algebra
- • Passarino-Veltman reduction and Denner-Dittmaier scheme to do one-loop reduction and evaluation.

H. van Deurzen et al.

ttH+ **jet at NLO**

H. van Deurzen et al.

ttH+ **jet at NLO**

H. van Deurzen et al.

- • The Born and the real emission matrix elements are computed using SHERPA and the library AMEGIC which implements the Catani-Seymour dipole formalism. SHERPA also performs the integration over the phase space and the analysis.
- • The virtual corrections are generated with the GOSAM which combines automated diagramgeneration and algebraic manipulation with \boldsymbol{d} -dimensional integrand-level reduction.
- \bullet • The virtual amplitudes of $t\bar{t}Hj$ have been decomposed in terms of MIs using for the first time the $\emph{integrand reduction via Laurent expansion}$, implemented in the $C++$ library
NINTIA NINJA.

F. Maltoni,Prakash Mathews, VR et al.

- F. Maltoni,Prakash Mathews, VR et al. \bullet • Effective Field Theory (EFT) approach to study the nature of interaction of Higgs with the Biswarup's talk other SM particles.
- Not only useful for SM electroweak precision physics, but also pin down BSM effects.

- F. Maltoni,Prakash Mathews, VR et al. •• Effective Field Theory (EFT) approach to study the nature of interaction of Higgs with the Biswarup's talk other SM particles.
- \bullet Not only useful for SM electroweak precision physics, but also pin down BSM effects.
- \bullet EFT contains only SM particles and the symmetries at the EW scale.

$$
\mathcal{L}_{HC,J} = \mathcal{L}_{SM-H} + \mathcal{L}_J,
$$

- reduces significantly the possible interaction terms in the Lagrangian
- \circ \circ Higgs boson with various spin-partiy assignment

- F. Maltoni,Prakash Mathews, VR et al. •• Effective Field Theory (EFT) approach to study the nature of interaction of Higgs with the Biswarup's talk other SM particles.
- •Not only useful for SM electroweak precision physics, but also pin down BSM effects.
- •EFT contains only SM particles and the symmetries at the EW scale.

 $\mathcal{L}_{HC,J}=\mathcal{L}_{SM-H}+\mathcal{L}_{J}\,,$

- reduces significantly the possible interaction terms in the Lagrangian
- ◦ \circ Higgs boson with various spin-partiy assignment
- •● EFT has been implemented in FeynRules and passed to the Madgraph5 and aMC@NLO framework by means of UFO model file.
	- improvable with new operators,
	- o higher order QCD effects can be incorporated systematically.
	- \circ multi-parton tree-level computation with parton shower,
	- $\mathsf O$ next to leading order calculations matched with parton sowers.

Higgs Characterisation for spin-0 Higgs

Buchmuller et al,Grzadkowski et al

Higgs Characterisation for spin-0 Higgs

Buchmuller et al,Grzadkowski et al

dimension-6 operators with pair of fermions

$$
\mathcal{L}_0^f = -\sum_{f=t,b,\tau} \bar{\psi}_f (c_\alpha \kappa_{Hff} g_{Hff} + i s_\alpha \kappa_{Aff} g_{Aff} \, \gamma_5) \psi_f X_0 \,,
$$

Higgs Characterisation for spin-0 Higgs

Buchmuller et al,Grzadkowski et al

dimension-6 operators with pair of fermions

$$
\mathcal{L}_0^f = -\sum_{f=t,b,\tau} \bar{\psi}_f (c_\alpha \kappa_{Hff} g_{Hff} + i s_\alpha \kappa_{Aff} g_{Aff} \, \gamma_5) \psi_f X_0 \,,
$$

dimension-6 operators with pair of vector bosons

$$
\mathcal{L}_{0}^{V} = \left\{ c_{\alpha} \kappa_{\rm SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \right.\left. - \frac{1}{4} \left[c_{\alpha} \kappa_{H\gamma\gamma} g_{H\gamma\gamma} A_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{A\gamma\gamma} g_{A\gamma\gamma} A_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.\left. - \frac{1}{2} \left[c_{\alpha} \kappa_{HZ\gamma} g_{HZ\gamma} Z_{\mu\nu} A^{\mu\nu} + s_{\alpha} \kappa_{AZ\gamma} g_{AZ\gamma} Z_{\mu\nu} \tilde{A}^{\mu\nu} \right] \right.\left. - \frac{1}{4} \left[c_{\alpha} \kappa_{Hgg} g_{Hgg} G_{\mu\nu}^{a} G^{a,\mu\nu} + s_{\alpha} \kappa_{Agg} g_{Agg} G_{\mu\nu}^{a} \tilde{G}^{a,\mu\nu} \right] \right.\left. - \frac{1}{4} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + s_{\alpha} \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \right.\left. - \frac{1}{2} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right.\left. - \frac{1}{\Lambda} c_{\alpha} \left[\kappa_{H\partial\gamma} Z_{\nu} \partial_{\mu} A^{\mu\nu} + \kappa_{H\partial Z} Z_{\nu} \partial_{\mu} Z^{\mu\nu} + \left(\kappa_{H\partial W} W_{\nu}^{+} \partial_{\mu} W^{-\mu\nu} + h.c. \right) \right] \right\} X_{0},
$$

 $c_{\alpha} \equiv \cos \alpha \, , \ \ \ s_{\alpha} \equiv \sin \alpha \, ,$

Higgs Characterisation with spin-2 Higgs

J. Ellis et al

Higgs Characterisation with spin-2 Higgs

J. Ellis et al

Minimal coupling to spin-2 Higgs with fermions:

$$
\mathcal{L}_2^f = -\frac{1}{\Lambda}\sum_{f=q,\ell} \kappa_f\, T_{\mu\nu}^f X_2^{\mu\nu}\,,
$$

Higgs Characterisation with spin-2 Higgs

J. Ellis et al

Minimal coupling to spin-2 Higgs with fermions:

$$
\mathcal{L}_2^f = -\frac{1}{\Lambda}\sum_{f=q,\ell} \kappa_f\, T_{\mu\nu}^f X_2^{\mu\nu}\,,
$$

Minimal coupling to spin-2 Higgs with fermions:

$$
\mathcal{L}_2^V = -\frac{1}{\Lambda}\sum_{V=Z,W,\gamma,g} \kappa_V\, T_{\mu\nu}^V X_2^{\mu\nu}\,.
$$

where $T^{\mu\nu}$ is the energy momentum tensor of SM fields.

$$
T_{\mu\nu}^{f} = -g_{\mu\nu} \Big[\bar{\psi}_{f} (i\gamma^{\rho}D_{\rho} - m_{f}) \psi_{f} - \frac{1}{2} \partial^{\rho} (\bar{\psi}_{f} i\gamma_{\rho} \psi_{f}) \Big] + \Big[\frac{1}{2} \bar{\psi}_{f} i\gamma_{\mu} D_{\nu} \psi_{f} - \frac{1}{4} \partial_{\mu} (\bar{\psi}_{f} i\gamma_{\nu} \psi_{f}) + (\mu \leftrightarrow \nu) \Big], T_{\mu\nu}^{\gamma} = -g_{\mu\nu} \Big[-\frac{1}{4} A^{\rho\sigma} A_{\rho\sigma} + \partial^{\rho} \partial^{\sigma} A_{\sigma} A_{\rho} + \frac{1}{2} (\partial^{\rho} A_{\rho})^{2} \Big] - A_{\mu}^{\rho} A_{\nu\rho} + \partial_{\mu} \partial^{\rho} A_{\rho} A_{\nu} + \partial_{\nu} \partial^{\rho} A_{\rho} A_{\mu},
$$

Higgs Characterisation

F. Maltoni,Prakash Mathews, VR et al.

Higgs Characterisation

F. Maltoni,Prakash Mathews, VR et al.

The transverse momentum of the Z boson with the highest and lowest reconstructed mass, \boldsymbol{p} $\boldsymbol{Z_{1}}$ \bm{T} Z_1^Z and $p_T^{Z_2}$, in $X(\rightarrow ZZ^*) \rightarrow \mu^+\mu^-e^+e^-.$

Higgs Characterisation: Non-universal couplings

F. Maltoni,Prakash Mathews, VR et al.

Higgs Characterisation: Non-universal couplings

F. Maltoni,Prakash Mathews, VR et al.

The transverse momentum p_{T}^{X} gluons $\kappa_{q}\neq\kappa_{g}$ as obtained from $\text{AMC@NLO.}\; \bullet$ It violates unitarity. \bm{T} $\frac{\lambda}{T}$ of a spin-2 state with non universal couplings to quarks and
Ufrom $\lambda M C@N L Q$. Alt violates unitarity

• Fixed order QCD corrections to gluon fusion contribute bulk of the cross section

• Fixed order QCD corrections to gluon fusion contribute bulk of the cross section

• Two loop EW corrections, mixed QCD-electroweak and b quark contributions account for 5% to gluon fusion

• Fixed order QCD corrections to gluon fusion contribute bulk of the cross section

• Two loop EW corrections, mixed QCD-electroweak and b quark contributions account for 5% to gluon fusion

 \bullet $NNLL$ resummation effects can be included through suitable central scale choice.

• Fixed order QCD corrections to gluon fusion contribute bulk of the cross section

• Two loop EW corrections, mixed QCD-electroweak and b quark contributions account for 5% to gluon fusion

- \bullet $NNLL$ resummation effects can be included through suitable central scale choice.
- At $\sqrt{S} = 8\%$ TeV, the scale uncertainty varies between $\pm 9\%$ at $m_H = 125$ GeV.
• the PDF + α_s uncertainty varies between $+7\%$ at $m_H = 125$ GeV • the PDF + α_s uncertainty varies between $\pm 7\%$ at $m_H = 125$ GeV.

• Fixed order QCD corrections to gluon fusion contribute bulk of the cross section

• Two loop EW corrections, mixed QCD-electroweak and b quark contributions account for 5% to gluon fusion

- \bullet $NNLL$ resummation effects can be included through suitable central scale choice.
- At $\sqrt{S} = 8\%$ TeV, the scale uncertainty varies between $\pm 9\%$ at $m_H = 125$ GeV.
• the PDF + α_s uncertainty varies between $+7\%$ at $m_H = 125$ GeV • the PDF + α_s uncertainty varies between $\pm 7\%$ at $m_H = 125$ GeV.
- Higgs with 1,2 and ³ jets; Higgs with top +one jet are known upto NLO level

• Fixed order QCD corrections to gluon fusion contribute bulk of the cross section

• Two loop EW corrections, mixed QCD-electroweak and b quark contributions account for 5% to gluon fusion

 \bullet $NNLL$ resummation effects can be included through suitable central scale choice.

• At $\sqrt{S} = 8\%$ TeV, the scale uncertainty varies between $\pm 9\%$ at $m_H = 125$ GeV.
• the PDF + α_s uncertainty varies between $+7\%$ at $m_H = 125$ GeV • the PDF + α_s uncertainty varies between $\pm 7\%$ at $m_H = 125$ GeV.

• Higgs with 1,2 and 3 jets; Higgs with top +one jet are known upto NLO level • Higgs

Characterisation with MADGRAF frame work is ^a new tool in the market to analyse Higgs boson's spin-partity and its coupling to SM particles in ^a model independent way.