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Discovery of Higgs-like boson

• Two high energetic photons (ET > 25, 35 GeV)
• Inviriant mass distribution
• Background: Sideband method (data based)
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Discovery of Higgs-like boson

• Four leptons in the final state
• Z mass constraint
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Standard Model fit (Experiment)

• ATLAS: mh = 125 ± 0.4(stat) ± 0.5(sys) GeV

• CMS: mh = 126 ± 0.4(stat) ± 0.5(sys) GeV
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Standard Model fit (Theory)

• Fit by theory colleagues
• Uses state of the art calculations in standard model and most of the available data on

precision measurements from experiments such as LEP, Tevatron etc
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∂µ − i

2
gτ · Aµ − i

2
g′Bµ

)
Φ

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 µ2 > 0

• The SU(2)L × U(1)Y invariant Yukawa interaction Lagrangian is given by

LY = YeLΦeR + YuQLΦ̃uR + YdQLΦdR + h.c

where Φ̃ = iτ2Φ∗ with Y (Φ̃) = −1
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• ζi(x) are called Goldstone bosons (massless,spinless)
• h(x) is called the Higgs boson.
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where the masses of W±, Z, γ bosons:

M2
W = g2v2

4
, M2

Z = v2

4
(g2 + g

′2), Mγ = 0

The vertices are

h(x)ViµV
∗µ
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M2
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• If ΛP = 1019 GeV, the higgs has to be lightmh ≤ 145 GeV.
• If ΛP = 103 GeV, the higgs has to be heavymh ≤ 750 GeV.
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• Precision measurements can give bounds on Higgs boson mass.

• Bounds are sensitive to top quark mass mt
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∆mt = 1 GeV −→ ∆mh = ±2 GeV

2σ variation of the top quark mass allows the upper boundmh≥125.6 GeV.
• Top quark production measurements at Tevatron and NNLO (approx) results give (Alekhin et
al):

mMS
t (mt) = 163.3 ± 2.7 GeV −→ m

pole
t = 173.3 ± 2.8 GeV ,

The upper bound for vacuum stability can be realized

mh ≥ 129.4 ± 5.6 GeV ,

consistent with the recent measurements by ATLAS and CMS thanks to larger error.
• Global average has small error

m
exp
t = 173.2 ± 0.9 GeV .

which can give stringiant condition on vacuum stability with small error on the higgs mass.
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• λ is sensitive to top mass
• Stability of vacuum can be answered only if the error on the top mass goes down

significantly.
• e+e− machine can give better measurement of top mass
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Direct:

e+

e−

Z

h

mh > 114.4 GeV

Z∗

Direct:

• LEP is a e+e− collider with√
s = 209 GeV

• Primary search mode e+e− → hZ

• On-shell higgs can be produced if the
mass of the higgs is less than√
s−MZ = 118 GeV

• Low statistics and insufficient energy
available give the lower bound
mh > 114.4 GeV .
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h

g

t

g

qi qj
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•

First three productions are known to NNLO level in QCD
• the last one is known only upto NLO level.
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Width of the Higgs boson

Width of the light Higgs boson is very small and hence the interference effects are negligible

σ(P1P2 → H → X) = σ(P1P2 → H)BR(H → X)

Mass resolution in γγ and ZZ channels is very good.



Theory influence on the rates



Theory influence on the rates



Theory influence on the rates



Theory influence on the rates



Theory influence on the rates



Theory influence on the rates

• To exclude something we need to understand the signal well
• To discover something we need to understand the background well
R.Harlander
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• MSTW, ABM and NNPDF come with different PDF sets with different choices of αs,mc,mb

• Choice of PDF set can bring in significant uncertainty of the order 10 to 20%
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(τ
x
,m2

h, µF

)



Partonic Cross section

2S dσP1P2

(
τ,m2

h

)
=
∑

ab

∫ 1

τ

dx

x
Φab (x, µF ) 2ŝ dσ̂ab
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Partonic Cross section

2S dσP1P2

(
τ,m2

h

)
=
∑

ab

∫ 1

τ

dx

x
Φab (x, µF ) 2ŝ dσ̂ab

(τ
x
,m2

h, µF

)

• dσ̂ab is perturbatively computable as a power series in αs(µR), where µR is the

renormalisation scale.

dσ̂ab (µF ) = αd
s(µR)

∑

i=0

αi
s(µR)dσ̂ab,(i) (µF , µR)

• Renormalisation group equation:

µ2
R

d

dµ2
R

αs(µR) = β (αs(µR))

• Fixed order results are often sensitive to µR. • Many new production channels open up

beyond LO.
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2S dσPP (x,mh) =

∫ 1

x

dz

z
Φ

(0)
gg (z,mh, µF ) 2ŝ dσ̂

(0)
gg

(x
z
,m2

h, µR

)
+ · · ·

σ̂
(0)
gg (ŝ, µR) ∼ α2

s(µR)

[
F (GF ,mt,mh)

]
,

1
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100 120 140 160 180 200 220 240 260 280 300

σ(pp→H+X) [pb]

MH [GeV]

LO                          Harlander

√ s = 14 TeV

• Leading order is uncontrolable due to µR scale and can not be used for any study in the
present form.

• Only higher order corrections can provide sensible result thanks to RG equation

µ2 d

dµ2
σ = 0
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(τ
x
,mH

)
τ =

m2
H

S



Soft gluons dominate!

S.Catani,P.Nason,M.Grazzini,D.DeFlorian;R.Harlander,
B.Kilgore;E.Laenen,L.Magnea,Moch,Vogt,VR

2S dσP1P2 (τ,mH) =
∑

ab

∫ 1

τ

dx

x
Φab (x) 2ŝ dσ̂ab
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• Expand the partonic cross section around
x = τ .
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2-loop Electroweak, Mixed QCD and Electroweak, b quark con-
tributions:
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al;W.Keung,F.Petriello,O.Brein

H "interferece" with "t" loop + NLO QCD

g

b

g

Pure QCD processes interference with Electroweak Processes:

H

g

g

W, Z

H

g

g

W, Z

H

g

g

W, Z

Electroweak: 5%(mH = 120 Gev) and −2% (mH = 300GeV); b quark loops contribute
5 − 6% at mH = 120 GeV at LHC
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Ahrens,Becher,Neubert,Yang:

• NLO with exact top quark mass
contributions,

• NNLO in the large top quark mass
limit,

• EW corrections given by Passarino et
al

• use exact solutions to the RG
equations of soft,collinear and
hard pieces of the cross section.

Good perturbative stability from LO onwards.
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VR, J. SmithMSTW PDF set (σ in pb and errors(±) in %):

mH NNLO µR µR,3 µF µ NNLOµ PDF N3LOsv µR

123 18.99 +10.82
−10.41

+16.70
−16.04

−0.43
+0.53

+10.44
−9.93 20.97

+2.50
−3.12 19.79 +0.10

−2.32

124 18.68 +10.80
−10.39

+16.66
−16.01

−0.41
+0.51

+10.43
−9.94 20.62

+2.51
−3.12 19.46 +0.09

−2.28

125 18.37 +10.77
−10.37

+16.63
−15.99

−0.39
+0.50

+10.43
−9.94 20.28

+2.51
−3.13 19.13 +0.08

−2.24

126 18.07 +10.75
−10.35

+16.59
−15.96

−0.37
+0.47

+10.42
−9.94 19.95

+2.52
−3.13 18.82 +0.07

−2.19

127 17.78 +10.73
−10.33

+16.56
−15.93

−0.35
+0.45

+10.41
−9.95 19.63

+2.52
−3.13 18.51 +0.06

−2.15



µR, µF and PDF dependence in Higgs production ( 8 TeV )

VR, J. SmithMSTW PDF set (σ in pb and errors(±) in %):

mH NNLO µR µR,3 µF µ NNLOµ PDF N3LOsv µR

123 18.99 +10.82
−10.41

+16.70
−16.04

−0.43
+0.53

+10.44
−9.93 20.97

+2.50
−3.12 19.79 +0.10

−2.32

124 18.68 +10.80
−10.39

+16.66
−16.01

−0.41
+0.51

+10.43
−9.94 20.62

+2.51
−3.12 19.46 +0.09

−2.28

125 18.37 +10.77
−10.37

+16.63
−15.99

−0.39
+0.50

+10.43
−9.94 20.28

+2.51
−3.13 19.13 +0.08

−2.24

126 18.07 +10.75
−10.35

+16.59
−15.96

−0.37
+0.47

+10.42
−9.94 19.95

+2.52
−3.13 18.82 +0.07

−2.19

127 17.78 +10.73
−10.33

+16.56
−15.93

−0.35
+0.45

+10.41
−9.95 19.63

+2.52
−3.13 18.51 +0.06

−2.15

Uncertainty in NNLO result:
• µR variation (mh/2 < µR < 2mh) gives 11%

• µR variation (mh/3 < µR < 3mh) gives 17%

• µF variation (mh/2 < µR < 2mh) gives 0.5%

• µR = µF = 1/2mh resummes soft gluons

• MSTW PDF gives 3%
• N3LOsv gives around 3%
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PDF dependence in Higgs production ( 8 TeV )

VR, J. SmithDiffernet PDF sets (mh in GeV and cross sections in pb):

mh NNLO N3LOsv

MSTW ABM CT NNPDF MSTW ABM CT NNPDF

120 19.98 18.51 19.86 21.00 20.83 21.04 20.26 20.91
121 19.64 18.18 19.52 20.65 20.47 20.62 19.91 20.56
122 19.31 17.89 19.20 20.30 20.13 20.32 19.57 20.21
123 18.99 17.58 18.88 19.96 19.79 19.97 19.24 19.87
124 18.68 17.29 18.57 19.63 19.46 19.63 18.92 19.54
125 18.37 16.99 18.27 19.31 19.13 19.28 18.61 19.21
126 18.07 16.71 17.97 18.99 18.82 18.96 18.31 18.89
127 17.78 16.43 17.68 18.66 18.51 18.64 18.01 18.53
128 17.49 16.16 17.39 18.52 18.21 18.32 17.72 18.61
129 17.21 15.91 17.12 18.09 17.91 18.04 17.43 17.99



PDF dependence in Higgs production ( 8 TeV )

VR, J. SmithDiffernet PDF sets (mh in GeV and cross sections in pb):

mh NNLO N3LOsv

MSTW ABM CT NNPDF MSTW ABM CT NNPDF

120 19.98 18.51 19.86 21.00 20.83 21.04 20.26 20.91
121 19.64 18.18 19.52 20.65 20.47 20.62 19.91 20.56
122 19.31 17.89 19.20 20.30 20.13 20.32 19.57 20.21
123 18.99 17.58 18.88 19.96 19.79 19.97 19.24 19.87
124 18.68 17.29 18.57 19.63 19.46 19.63 18.92 19.54
125 18.37 16.99 18.27 19.31 19.13 19.28 18.61 19.21
126 18.07 16.71 17.97 18.99 18.82 18.96 18.31 18.89
127 17.78 16.43 17.68 18.66 18.51 18.64 18.01 18.53
128 17.49 16.16 17.39 18.52 18.21 18.32 17.72 18.61
129 17.21 15.91 17.12 18.09 17.91 18.04 17.43 17.99

• ABM is 7.4% smaller than MSTW
• CT is just 0.5% smaller than MSTW
• NNPDF is 5% larger than MSTW
• All PDFs give almost same results for N3LOsv corrected cross section.
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Soft gluons at N3LOpSV for Higgs production ( 8 TeV )

VR, J. Smith

R =
σNiLO(µ)

σNiLO(µ0)

mH

σ (pb)

LHC(8 TeV)
µR=µF=1/2 mH
MSTW

LO
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NNLO
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• NLO increases the cross section by 80%,
• NNLO to 30%,
• resummation to 10% and electoweak effects by 5%
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Update-1: Anastasiou-Boughezal-Petriello-Stoeckli:

• Exact NLO cross section with full dependence on the top- and bottom-quark masses

• NNLO cross section-Effective Field Theory, i.e., in the large-mt limit

• EW contributions evaluated in the complete factorization scheme

σ =
∞∑

i=0

αi
sσ

(i)
QCD ⊗ (1 + δEW )

• Mixed QCD-EWcontributions are also accounted for, together with some effects from EW
corrections at finite transverse momentum.

• The effect of soft-gluon resummation is mimicked by choosing the central value of the
renormalization and factorization scales as µR = µF = MH/2.
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Update-2: de Florian-Grazzini:

• Exact NLO cross section with full dependence on the top- and bottom-quark masses,
computed with the program HIGLU,

• the NLL resummation of soft-gluons,

• the NNLL+NNLO corrections are consistently added in the large-mt limit

• corrected for EW contributions in the complete factorization scheme.

• The central value of factorization and renormalization scales is chosen to be
µF = µR = MH
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Final numbers for gluon fusion for mh = 125 GeV



Final numbers for gluon fusion for mh = 125 GeV

Production cross section at
√
s = 7 TeV with scale(µR = µF ) and PDF(+αs)

unctertainties:

σ = 15.3111.7%
−7.8%(scale)

+7.8%
−7.3%

(PDF + αs)pb

Production cross section at
√
s = 8 TeV:

• de Florian et al:

σ = 19.527.2%
−7.8%(scale)

+7.5%
−6.9%

(PDF + αs)pb

• Anastasiou et al:

σ = 20.698.4%
−9.3%(scale)

+7.8%
−7.5%

(PDF + αs)pb
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• Square of one-loop virtuals to N3LO

g(p1) + g(p2) → g(p3) +H(p4)

q(p1) + g(p2) → q(p3) +H(p4)

q(p1) + q̄(p2) → g(p3) +H(p4)

• Performing a loop-expansion of the amplitudes

AX =
∞∑

j=0

A(j)
X

in the effective theory with j being the number of loops, we have:

|AX |2 =
∣∣∣A(0)

X

∣∣∣
2
+ 2ℜ

(
A(0)

X A(1)
X
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+
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+ . . .
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A(j)
X
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(
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∗)
+
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X
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2
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(
A(0)

X A(2)
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σ
1⊗1
X = s−1−ε NX (4π)ε

16π Γ(1 − ε)
δ1−2ε

∫ 1

0
dλ [λ (1 − λ)]−ε

∑∣∣∣A(1)
X

∣∣∣
2
.



Towards N3LO corrected Higgs cross section

Anastasiou et.al
• Square of one-loop virtuals to N3LO

g(p1) + g(p2) → g(p3) +H(p4)

q(p1) + g(p2) → q(p3) +H(p4)

q(p1) + q̄(p2) → g(p3) +H(p4)

• Performing a loop-expansion of the amplitudes

AX =
∞∑

j=0

A(j)
X

in the effective theory with j being the number of loops, we have:

|AX |2 =
∣∣∣A(0)

X

∣∣∣
2
+ 2ℜ

(
A(0)

X A(1)
X

∗)
+

[∣∣∣A(1)
X

∣∣∣
2
+ 2ℜ

(
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X A(2)
X

∗)]
+ . . .

σ
1⊗1
X = s−1−ε NX (4π)ε

16π Γ(1 − ε)
δ1−2ε

∫ 1

0
dλ [λ (1 − λ)]−ε

∑∣∣∣A(1)
X

∣∣∣
2
.

• Reverse Unitarity and Integration parts lead to 19 master integrals
• Differential equation method is used to solve the master integrals
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Alternate approach towards N3LO

Kilgore
• Threshold expansion

• Square of the one-loop contribution to the cross section as an extended threshold
expansion.

• Obtain enough terms to invert the series and determine the closed functional form through
order ε.

• The method has been applied to get earlier results at NLO and NNLO level for inclusive
cross sections in closed form, in terms of G-functions and the hypergeometric functions 2F1

and 3F2.

• These functions can be readily expanded to all orders in ε



Alternate approach towards N3LO

Kilgore
• Threshold expansion

• Square of the one-loop contribution to the cross section as an extended threshold
expansion.

• Obtain enough terms to invert the series and determine the closed functional form through
order ε.

• The method has been applied to get earlier results at NLO and NNLO level for inclusive
cross sections in closed form, in terms of G-functions and the hypergeometric functions 2F1

and 3F2.

• These functions can be readily expanded to all orders in ε

2F1(1,−ε; 1 − ε;−xy/y) =
∞∑

n=0

x

n!

(−ε)n
n!


2F1(1,−ε, 1 − ε,−y/y) − y

n−1∑

m=0

ym
m!

(1 − ε)m
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Higgs + 2 jets at NLO
H. van Deurzen et al.

• Transverse momentum pT of the first and the second jet.

σLO[pb] = 1.90
+0.58
−0.41 , σNLO[pb] = 2.90

+0.05
−0.20 ,

• Scale variation:

1

2
Ĥt < µ < 2Ĥt .
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• Jets are clustered using the anti-kt-algorithm implemented in FastJet with radiusR = 0.5
and a minimum transverse momentum of pT,jet > 20 GeV and pseudorapidity |η| < 4.0.

• The renormalization and factorization scales are set to

µF = µR =
ĤT

2
=

1

2

(√
m2

H + p2T,H +
∑

i

|pT,i|
)
,

• The strong coupling is therefore evaluated at different scales according to
α5

s → α2
s(mH)α3

s(ĤT /2).
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Higgs + 3-jets via vector boson fusion (VBF)
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H H

H H

• Higgs production via Vector Boson Fusion (VFB) can disentangle the Higgs boson’s coupling
to fermionns and gauge bosons.

• Taging two jets with Higgs and vetoing soft jets in the central region can significantly reduce
the QCD background as well as Higgs plus two jets from gluon-gluon fusion.

• Ratio of Higgs+3 jets to Higgs+2 jets need to known accurately.

Method:

• Spin helicity package MATCHBOX provides real emission amplitudes, spin summation,
subtraction terms for IR singularities

• ColorFull and ColurMath packages to do color algebra

• Passarino-Veltman reduction and Denner-Dittmaier scheme to do one-loop reduction and
evaluation.
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Method:

• Spin helicity package MATCHBOX provides real emission amplitudes, spin summation,
subtraction terms for IR singularities
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• The Born and the real emission matrix elements are computed using SHERPA and the
library AMEGIC which implements the Catani-Seymour dipole formalism. SHERPA also
performs the integration over the phase space and the analysis.

• The virtual corrections are generated with the GOSAM which combines automated diagram
generation and algebraic manipulation with d-dimensional integrand-level reduction.

• The virtual amplitudes of tt̄Hj have been decomposed in terms of MIs using for the first
time the integrand reduction via Laurent expansion, implemented in the C + + library
NINJA.
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• Effective Field Theory (EFT) approach to study the nature of interaction of Higgs with the
other SM particles. Biswarup’s talk

• Not only useful for SM electroweak precision physics, but also pin down BSM effects.

• EFT contains only SM particles and the symmetries at the EW scale.

LHC,J = LSM−H + LJ ,

◦ reduces significantly the possible interaction terms in the Lagrangian

◦ Higgs boson with various spin-partiy assignment

• EFT has been implemented in FeynRules and passed to the Madgraph5 and aMC@NLO
framework by means of UFO model file.

◦ improvable with new operators,

◦ higher order QCD effects can be incorporated systematically.

◦ multi-parton tree-level computation with parton shower,

◦ next to leading order calculations matched with parton sowers.
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dimension-6 operators with pair of fermions

Lf
0 = −
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f=t,b,τ

ψ̄f
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cακHffgHff + isακAffgAff γ5

)
ψfX0 ,



Higgs Characterisation for spin-0 Higgs
Buchmuller et al,Grzadkowski et al

dimension-6 operators with pair of fermions

Lf
0 = −

∑

f=t,b,τ

ψ̄f

(
cακHffgHff + isακAffgAff γ5

)
ψfX0 ,

dimension-6 operators with pair of vector bosons

LV
0 =

{
cακSM

[1
2
gHZZ ZµZ

µ + gHWW W+
µ W

−µ
]

− 1

4

[
cακHγγgHγγ AµνA

µν + sακAγγgAγγ AµνÃ
µν
]

− 1

2

[
cακHZγgHZγ ZµνA

µν + sακAZγgAZγ ZµνÃ
µν
]

− 1

4

[
cακHgggHgg G

a
µνG

a,µν + sακAgggAgg G
a
µνG̃

a,µν
]

− 1

4

1

Λ

[
cακHZZ ZµνZ

µν + sακAZZ ZµνZ̃
µν
]

− 1

2

1

Λ

[
cακHWW W+

µνW
−µν + sακAWW W+

µνW̃
−µν

]

− 1

Λ
cα
[
κH∂γ Zν∂µA

µν + κH∂Z Zν∂µZ
µν +

(
κH∂W W+

ν ∂µW
−µν + h.c.

)]}
X0 ,

cα ≡ cosα , sα ≡ sinα ,
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Minimal coupling to spin-2 Higgs with fermions:

Lf
2 = − 1

Λ

∑

f=q,ℓ

κf T
f
µνX

µν
2 ,

Minimal coupling to spin-2 Higgs with fermions:

LV
2 = − 1

Λ

∑

V =Z,W,γ,g

κV TV
µνX

µν
2 .

where Tµν is the energy momentum tensor of SM fields.

T f
µν = − gµν

[
ψ̄f (iγ

ρDρ −mf )ψf − 1

2
∂ρ(ψ̄f iγρψf )

]

+
[1
2
ψ̄f iγµDνψf − 1

4
∂µ(ψ̄f iγνψf ) + (µ ↔ ν)

]
,

T γ
µν = − gµν

[
− 1

4
AρσAρσ + ∂ρ∂σAσAρ +

1

2
(∂ρAρ)

2
]

−A ρ
µAνρ + ∂µ∂

ρAρAν + ∂ν∂
ρAρAµ ,
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Higgs Characterisation
F. Maltoni,Prakash Mathews, VR et al.

The transverse momentum of the Z boson with the highest and lowest reconstructed mass,
pZ1

T and pZ2

T , in X(→ ZZ∗) → µ+µ−e+e−.



Higgs Characterisation: Non-universal couplings
F. Maltoni,Prakash Mathews, VR et al.

� �

� �

� �

� �

� �

� �

� �

� �

� �



Higgs Characterisation: Non-universal couplings
F. Maltoni,Prakash Mathews, VR et al.
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pp X(2
+
) at the LHC8 (pb/bin)

aMC@NLO + HERWIG6

The transverse momentum pXT of a spin-2 state with non universal couplings to quarks and
gluons κq 6= κg as obtained from aMC@NLO. • It violates unitarity.
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• Two loop EW corrections, mixed QCD-electroweak and b quark contributions account for 5%
to gluon fusion

•NNLL resummation effects can be included through suitable central scale choice.

• At
√
S = 8% TeV, the scale uncertainty varies between ±9% at mH = 125 GeV.

• the PDF +αs uncertainty varies between ±7% at mH = 125 GeV.

• Higgs with 1,2 and 3 jets; Higgs with top +one jet are known upto NLO level • Higgs

Characterisation with MADGRAF frame work is a new tool in the market to analyse Higgs
boson’s spin-partity and its coupling to SM particles in a model independent way.
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