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Summary. In this talk we present a pedagogical review of scalar field dynamics.
The main emphasis is put on the underlying basic features rather than on con-
crete scalar field models. Cosmological dynamics of standard scalar fields, phan-
toms and tachyon fields is developed in detail. Scaling solutions are discussed em-
phasizing their importance in modelling dark energy. The developed concepts are
implemented in an example of quintessential inflation. A brief discussion of scaling
solutions for coupled quintessence is also included.

Accelerated expansion seems to have played an important role in the
dynamical history of our universe. There is a firm belief, at present, that
universe has passed through inflationary phase at early times and there have
been growing evidences that it is accelerating at present. The recent measure-
ment of the Wilkinson Microwave Anisotropy Probe (WMAP) in the Cosmic
Microwave Background (CMB) made it clear that (i) the current state of
the universe is very close to a critical and that (ii) primordial density per-
turbations that seeded large-scale structure in the universe are nearly scale-
invariant and Gaussian, which are consistent with the inflationary paradigm.
As for the current accelerating of universe, it is supported by observations of
high redshift type Ia supernovae treated as standardized candles and, more
indirectly, by observations of the cosmic microwave background and galaxy
clustering. The criticality of universe supported by CMB observations fixes
the total energy budget of universe. The study of large scale structure reveals
that nearly 30 percent of the total cosmic budget is contributed by dark mat-
ter. Then there is a deficit of almost 70 percent; the supernovae observations
tell us that the missing component is an exotic form of energy with large
negative pressure dubbed dark energy[1, 2, 3, 4]. The recent observations on
baryon oscillations provides yet another independent support to dark energy
hypothesis. The idea that universe is in the state of acceleration is slowly
establishing in modern cosmology.

The dynamics of our universe is described by Einstein equations in which
the contribution of energy content of universe is represented by energy mo-
mentum tensor appearing on RHS of these equations. The LHS represents
pure geometry given by the curvature of space time. Einstein equations in
their original form with energy momentum tensor of normal matter can not
lead to acceleration. There are then two ways to obtain accelerated expansion,
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either by supplementing energy momentum tensor by dark energy component
or by modifying the geometry itself. In the frame work of Dvali-Gabadadze-
Porrati (DGP) brane worlds[5], the extra dimensional effects can lead to late
time acceleration. The other alternative which is largely motivated by phe-
nomenological considerations is related to the introduction of inverse powers
of Ricci scalar in the Einstein Hilbert action[6]. The third intriguing possi-
bility is provided by Bekenstein relativistic theory of modified gravity[7, 8, 9]
which apart from spin two field contains a vector and a scalar field.

Due to the simplicity of the mechanism, most of the work in cosmology
related late time acceleration is attributed to the assumption that within the
framework of general relativity, cosmic acceleration is sourced by an energy-
momentum tensor which has a large negative pressure. The simplest candi-
date of dark, yet most difficult from field theoretic point of view, is provided
by cosmological constant. Due to its non evolving nature it is plagued with
fine tuning problem which can be alleviate in dynamically evolving scalar
field models. A variety of scalar field models have been conjectured for this
purpose including quintessence [10, 11], phantoms[12, 13, 14], K-essence [15]
and recently tachyonic scalar fields[16]. In this talk we present a review of
cosmological dynamics of quintessence, phantoms and rolling tachyons. We
describe in detail the concepts of field dynamics relevant to cosmic evolution
with a special emphasis on scaling solutions. The example of quintessential
inflation is worked out in detail.

We employ the metric signature (-,+,+,+) and use the reduced Planck
mass M−2

p = 8πG ≡ κ2. In certain places we have adopted the unit Mp = 1.
Finally we should mention that our list of references is restricted, in most of
the places, we referred to reviews to help the readers.

1.1 Glimpses of FRW cosmology

The Freidmann-Robertson-Walker (FRW) model is based on the assumption
of homogeneity and isotropy which is approximately true at very large scales.
The small deviation from homogeneity at early epochs played very important
role in the dynamical history of our universe. The small density perturbations
are believed to have grown via gravitational instability into the structure we
see today in the universe. the origin of primordial perturbations is quan-
tum mechanical and is out side the scope of standard big bang model. In
what follows we shall review main features of FRW model necessary for the
subsequent sections.

Homogeneity and isotropy forces the metric of space time to assume the
form[17]

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

)
,

k = 0,±1 , (1.1)
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where a(t) is cosmic scale factor. Coordinates r, θ and φ are known as comov-

ing coordinates. A freely moving particle comes to rest in these coordinates.
Eq.(1.1) is purely a kinematic statement. In this problem the dynamics is

associated with the scale factor− a(t). Einstein equations allow to determine
the scale factor provided the matter content of universe is specified. Constant
k occurring in the metric (1.1) describes the geometry of spatial section of
space-time. Its value is also determined once the matter distribution in the
universe is known. Observations have repeatedly confirmed the spatially flat
geometry (k = 0) in confirmation of the prediction of inflationary scenario.

1.1.1 Evolution equations

The differential equations for the scale factor and the matter density follow
from Einstein equations

Gµ
ν ≡ Rµ

ν − 1

2
δµ
ν R = 8πGT µ

ν , (1.2)

whereGµ,ν is the Einstein tensor, Rµν is the Ricci tensor which depends on
the metric and its derivatives and R is Ricci scalar. The energy momentum
tensor Tµν assumes a simplified form reminiscent of ideal perfect fluid in FRW
background

Tµ
ν = Diag (−ρ, p, p, p) . (1.3)

In this case the components of Gµν can easily be computed

G0
0 = − 3

a2

(
ȧ2 + k

)
(1.4)

Gj
i =

1

a2

(
2aä + ȧ2 + k

)
(1.5)

and all the other components of Einstein tensor are identically zero. Equations
(1.2) then give the two independent equations

H2 ≡ ȧ2

a2
=

8πGρ

3
− k

a2
(1.6)

ä

a
= −4πG

3
(ρ + 3p) . (1.7)

The energy momentum tensor is conserved by virtue of the Bianchi identity
∆νGµ

ν = 0 leading to the continuity equation

ρ̇ + 3H(ρ + p) = 0 . (1.8)

Equations (1.6), (1.7) & (1.8) make a redundant set of equations convenient
to use; one of the two equations (1.7) & (1.8) can be obtained using the other
one and the Hubble equation (1.6). These equations supplemented with the
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equation of state p(t) = p(ρ) uniquely determine a(t), p(t) and ρ(t). Constant
k also gets determined

k

a2
= H2 (Ω(t) − 1) , (1.9)

where Ω = ρ/ρc is the dimensionless density parameter and ρc = 3H2/8πG
is critical density. The matter distribution clearly determines the spatial ge-
ometry of our universe namely

Ω < 1 or ρ < ρc → k = −1 (1.10)

Ω = 1 or ρ = ρc → k = 0 (1.11)

Ω > 1 or ρ > ρc → k = 1 . (1.12)

In case of k = 0, the value the scale factor at the present epoch a0 can
be normalized to a convenient value, say, a0 = 1. In other cases it should
be determined using the observed values of H0 and Ω(0) from the relation

a0H0 =
(
|Ω(0) − 1|

)−1/2
. Observations on cosmic micro wave background

radiation support the critical universe which is one of the predictions of in-
flation. We would therefore assume k = 0 in the subsequent description.

• Acceleration

We now turn to the nature of expansion which is determined by the mat-
ter content in the universe. Eq.(1.7) should be contrasted to the analogous
situation in Newtonian gravity

R̈ = −4π

3
GρR (1.13)

where R denotes the distance of the test particle from the center of a ho-
mogeneous sphere of mass density ρ. In general theory of relativity (GR),
unlike the Newtonian case, pressure contributes to energy density and may
qualitatively modify the dynamics. Indeed, from Eq.(1.7) we have

ä > 0 if p < −ρ

3
(1.14)

ä < 0 if p > −ρ

3
. (1.15)

Accelerated expansion, thus, is fuelled by an exotic form of matter of large
negative pressure dubbed dark energy which turns gravity into a repulsive
force. The simplest example of a perfect fluid of negative pressure is provided
by cosmological constant associated with ρ = constant. In this case the
continuity equation (1.8) yields the relation p = −ρ. A host of scalar field
systems can also mimic negative pressure.

Assuming that the universe is filled with perfect barotropic fluid with
constant equation of state parameter w = p/ρ yields

ρ ∝ a−3(1+w) (1.16)

a(t) ∝ t
2

3(1+w) (w > −1) (1.17)

a(t) ∝ eH t (w = −1) . (1.18)
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The last equation corresponds to cosmological constant which can be added
to the energy momentum tensor of the perfect fluid. Interestingly, in four
dimension and at the classical level, the only modification Einstein equations
allow is associated with Tµν → +Tµν +Λgµν . Historically such a modification
was first proposed by Einstein to achieve a static solution which turns out
to be unstable. It was later dropped by him after the Hubble’s discovery. In
presence of Λ, the evolution equations modify to

H2 =
8πG

3
+

Λ

3
, (1.19)

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
. (1.20)

From Eq.(1.20), it clearly follows that Λ term contributes negatively to the
pressure term and hence exhibits repulsive effect.

• Age crisis and cosmological constant

Apart from the dark energy problem, cosmological constant has other im-
portant implications, in particular, in relation to the age problem. In any
cosmological model with normal form of matter, the age of universe falls
short as compared to the age of some well known old objects found in the
universe. Remarkably, the presence of Λ can resolve the age problem. In order
to appreciate the problem, let us first consider the case of flat dust dominated
universe (Ωm = 1)

a(t) ∝ t2/3 → H0 =
2

3t0
. (1.21)

The present value of the Hubble parameter H0 is not accurately know by the
observations

H−1
0 = h−10.98 × 1010years , (1.22)

0.8 < h < 0.64 → to = (8 − 10) × 109years. (1.23)

This model is certainly in trouble as its prediction for age of universe fails
to meet the solar age constraint − t0 > (11 − 12) × 109years. One could try

to improve the situation by invoking the open model with Ω
(0)
m < 1. In this

case the age of universe is expected to be larger than the flat dust dominated
model− for less amount of matter, it would take longer for gravitational
interaction to slow down the expansion rate to its present value. Indeed, in
this case we have the exact expression

H0t0 =
1

1 − Ω
(0)
m

− Ω
(0)
m

2(1 − Ω
(0)
m )3/2

cosh−1

(
2 − Ω

(0)
m

Ω
(0)
m

)
(1.24)

from which follows that

H0t0 = 1 , for Ω(0)
m → 0 , (1.25)

H0t0 =
2

3
, for Ω(0)

m → 1 . (1.26)
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For obvious reasons, in case of the closed universe, the age would even be
smaller than 2/3H−1

0 . Though the age of universe is larger than 2/3H−1
0 for

vanishingly small value of Ω
(0)
m , such a model is note viable as Ω

(0)
m ' 0.3 and

universe is critical to a good accuracy. The problem can be solved in a flat
universe dominated by cosmological constant. In fact, in a flat universe with

two components (Ω
(0)
m + Ω

(0)
Λ = 1), the Hubble equation

(
ȧ

a

)2

= H2
0

[
Ω(0)

m

(a0

a

)2

+ Ω
(0)
Λ

]
(1.27)

has the solution

a

a0
=

(
Ω

(0)
m

Ω
(0)
Λ

)1/3

sinh2/3

(
3

2
Ω(0)

m

1/2
H0t

)
, (1.28)

which at t = t0 yields the following expression for the age of universe

t0 =
2

3

H−1
0

Ω
(0)
Λ

1/2
ln


1 + Ω

(0)
Λ

1/2

Ω
(0)
m

1/2


 . (1.29)

In Fig.1.1, we have plotted the age t0 versus Ωm. The age of universe is
larger than H−1

0 for a Λ dominated universe. The numerical value of t0 (t0 '
0.96H−1

0 ) is comfortable with observations for popular values of Ω
(0)
m = 0.3

and Ω
(0)
Λ = 0.7.

• Super acceleration

So far, we have restricted our attention to fluids with equation’ of state
parameter w ≥ −1. The case of w < −1 corresponds to phantom dark energy

and requires separate considerations. The power law expansion a(t) ∼ tn(n =
2/3(1 + w)) corresponds to shrinking universe for n < 0 (w < −1). The
situation can easily be remedied by changing the sign of t and by introducing
the origin of time ts

a(t) = (ts − t)n , (1.30)

which is the generic solution of evolution equations for super-negative values
of w and it gives rise to a very different future course of evolution

H =
n

ts − t
(1.31)

R = 6

[
ä

a
+

(
ȧ

a

)2
]

= 6
n(n − 1) + n2

(ts − t)2
. (1.32)

The Hubble expansion rate diverges as t → ts corresponding to infinitely
large energy density after a finite time in future. The curvature also grows to
infinity as t → ts. Such a situation is referred to Big Rip singularity. Big Rip
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Fig. 1.1. Age of universe (in the units of H−1
0 ) is plotted against Ω
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Λ = 1 and matter dominated model (green line)

with Ω
(0)
m = 1.

can be avoided in specific models of phantom field with variable equation of
state. It should also be emphasized that quantum effects become important
in a situation when curvature becomes large. In that case one should take
into account the higher order curvature corrections to Einstein Hilbert action
which crucially modifies the structure of singularity.

1.1.2 Scalar fields− as perfect fluids in FRW background

Scalar fields naturally arise in unified models of interactions and also in string
theory. Since the invent of inflation, they continue play an important role in
cosmology. They are frequently used as candidates of dark energy. In the
recent years a variety of scalar field models namely quintessence, phantoms,
tachyons, K-essence, dilatonic ghosts and others have been investigated in the
literature. In what follows we briefly describe some of these systems. Their
dynamics will be dealt with in detail in section III.

• Standard scalar field

Let us consider the scalar field minimally coupled to gravity

S = −
∫ (

1

2
gµν∂µφ∂νφ + V (φ)

)√−gd4x . (1.33)

The Euler Lagrangian equation
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∂µ δ(
√−gL)

δ∂µφ
− δ(

√−gL)

δφ
= 0 , (1.34)

√−g = a3(t)

for the action (1.33) in case of a homogeneous field acquires the form

φ̈ + 3Hφ̇ + Vφ = 0 , (1.35)

which is equivalent to the conservation equation

ρ̇

ρ
+ 3H(1 + w) = 0 . (1.36)

The energy momentum tensor

Tµν = −2
1√−g

δS

δgµν
(1.37)

for the field φ which arises from the action (1.33) is given by

Tµν = ∂µφ∂νφ − gµν

[
1

2
gµν∂µφ∂νφ + V (φ)

]
. (1.38)

In the homogeneous and isotropic universe, the field energy density ρφ and
pressure pφ obtained from Tµν are

T00 ≡ ρ =
φ̇2

2
+ V (φ), T i

i ≡ p =
φ̇2

2
− V (φ) . (1.39)

The field evolution equation
(1.35) formally integrates to

ρ = ρ0e
−6

∫ (
1− 2V

φ̇2+2V

)
da
a . (1.40)

Thus the scaling of field energy density crucially depends upon the ratio of
kinetic to potential energy. Depending upon the scalar field regime ρ can
mimic a behavior ranging from cosmological constant to stiff matter

ρ ∼ a−m 0 < m < 6 . (1.41)

This behavior is also clear intuitively namely the field φ rolling slowly along
the flat wing of the potential gives rise to p ' −ρ where as it gives p ' ρ
while dropping fast along the steep part of the potential. Interestingly, one
can obtain the similar picture in the oscillatory regime for a power law type
of potential.

• Acceleration during oscillations.
As the scalar field evolves towards the minimum of its, the slow role ceases
and a the scalar field enters into the regime of quasi periodic evolution with
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decaying amplitude. In what follows , we shall assume that the potential is
even and has minimum at φ = 0 . When the field initially being displaced from
the minimum of the potential, rolls below its slow roll value, the coherence
oscillation regime, ν >> H, commences. The evolution equation can then
be approximately solved by separating the two times scales namely the fast
oscillation time scale and the longer expansion time scale. On the first time
scale, the Hubble expansion can be neglected, and one obtain φ as a function
of time;

t − t0 = ±
∫

1√
2(Vm − V (φ))

dφ , (1.42)

where ρ ≡ Vm ≡ V (φm); Vm being the maximum current value of the po-
tential energy and φm being the field amplitude . On the longer time scale ρ
and φm slowly decrease because Hubble damping term in equation ( 1 ). The
average adiabatic index γ is defined as

γ =

〈
ρ + p

ρ

〉
=

〈
φ̇2

ρ

〉
, (1.43)

where< . > denotes the time average over one oscillation . Equation (4) then
tells that expansion during oscillations would continue (ä > 0) if γ < 2

3 . The
adiabatic evolution of a(t) and ρ is given by ,

a(t) ∝ t
2
3γ , (1.44)

ρ ≡ V (φm) ∝ t−2 . (1.45)

As φ̈ = −dV
dφ , the condition γ < 2

3 can equivalently be written

γ =

〈
φ̇2

ρ

〉
=

< φV,φ >

Vm
= 2(1 − < V >

Vm
) ,

= 2

∫ φm

0
(1 − V (φ)/Vm)

1
2 dφ

∫ φm

0
(1 − V (φ)/Vm)−

1
2 dφ

=
2p

p + 1
, (1.46)

for a power law potential V ∼ φ2p, which gives the average value of the
equation of state parameter

〈w〉 =
p − 1

p + 1
, p < 1/2 → acceleration . (1.47)

Thus a quadratic potential, on the average, mimics dust where as the quartic
potential exhibits radiation like behavior. It is really interesting that the
scalar field in oscillatory regime can give rise to dark energy for p < 1/2.

While developing scalar fields models of dark energy, it is important to
have some control on its dynamics. In what follows we show how to construct
a field potential viable to desired cosmic evolution.
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• Construction of field potential for a given cosmological evolu-

tion

After the invent of cosmological inflation, scalar field models have been fre-
quently used in cosmology in various contexts; they play a central role spe-
cially in modelling dark energy. Our focus in the review will also be around
these models. We should, however, caution the reader that the scalar field
models have limited predictive power. The merits of these models should
therefore be judged on the basis of generic features that might emerge in
them. Indeed, for a priori given cosmological evolution, we can always con-
struct a field potential that would produce it. We shall illustrate this simple
fact in case of a power law expansion for a general cosmological background
governed by the Friedmann equation

H2 =
ρq

A
, (1.48)

where q = 2, 2/3 correspond to Randall-Sundrum (RS) and Gauss-Bonnet
(GB) brane worlds respectively; A is a constant which takes different values
in different patches. We show below how to construct the field potential for
ordinary scalar field propagating in a general background described by (1.48).

φ̈ + 3Hφ̇ +
dV

dφ
. (1.49)

Using Eqs. (1.36) and (1.48) we obtain

1 + w = −
(

2

3q

)
Ḣ

H2
. (1.50)

From evolution equation (1.49) and the expression φ̇2 = V (1 + w)(1−w)−1,
we have the differential equation for the field potential V

V̇

V
= − ḟ + 6Hf

1 + f
, (1.51)

where f = (1 + w)(1 − w)−1. Integrating (1.51) respecting (1.50), we get

V (t) =
C

3q

(
3qH2 + Ḣ

H2(q−1)/q

)
, (1.52)

where C = A1/q is an integrating constant. Expressing f in terms of H and
its derivative through equation (1.50) and using (1.51), we obtain the φ(t)

φ(t) =

(
2C

3q

)1/2 ∫ [
− Ḣ

H2(q−1)/q

]1/2

dt . (1.53)
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Equations (refpoteq) and (1.53) allow to find the field potential with a given
expansion dynamics prescribed by a(t). For a(t) ∼ tn, we are interested, we
have

φ − φ0 = Dnqt
(q−1)/q , (1.54)

V (t) = Cn2/q

(
1 − n−(q+2)/2q

3q

)
t−2/q , (1.55)

where Dnq = n(2−q)/q(2C/3q)1/2(q/q − 1) and q 6= 1. Combining (1.54) and
(1.55) we get the expression for the potential as function of φ

V (φ) = V0φ
−(2/q−1) . (1.56)

In case q = 1, the field logarithmically depends on time t and Eq. (1.56) leads
to the well known exponential potential. For q = 2 corresponding to RS, we
obtain V (φ) ∼ 1/φ2. The case of high energy GB regime (q = 2/3) leads to
the power law behavior of V (φ)

V (φ) = V0φ
6 . (1.57)

• Phantom Field.
All these models of scalar field lead to the equation of state parameter w
greater than or equal to minus one. However, the recent observations do not
seem to exclude values of this parameter less than minus one. It is therefore
important to look for theoretical possibilities to describe dark energy with
w < −1 called phantom energy. In our opinion, the simplest alternative is
provided by a phantom field, scalar field with negative kinetic energy. Such a
field can be motivated from S-brane constructs in string theory. Historically,
phantom fields were first introduced in Hoyle’s version of the Steady State
Theory. In adherence to the Perfect Cosmological Principle, a creation field
(C-field) was for the first time introduced [12] to reconcile with homogeneous
density by creation of new matter in the voids caused by the expansion of
Universe. It was further refined and reformulated in the Hoyle and Narlikar
theory of gravitation [13]. Though the quantum theory of phantom fields is
problematic, it is nevertheless interesting to examine the cosmological conse-
quences of these fields at the classical level.

The Lagrangian of the phantom field minimally coupled to gravity is given
by

L = (16πG)−1R +
1

2
gµν∂φµ∂φν − V (φ) , (1.58)

where V (φ) is the phantom potential. The kinetic energy term of the phantom
field in (1.58) enters with the opposite sign in contrast to the ordinary scalar
field (we remind the reader that we use the metric signature, -,+,+,+). In
a spatially flat FRW cosmology, the stress tensor that follows from (1.58)
acquires the diagonal form T α

β = diag (−ρ, p, p, p) where the pressure and
energy density of field φ are given by
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ρ = − φ̇2

2
+ V (φ), p = − φ̇2

2
− V (φ) . (1.59)

The corresponding equation of state parameter is now given by

w ≡ p

ρ
=

φ̇2

2 + V (φ)

φ̇2

2 − V (φ)
. (1.60)

For ρ > 0, w < −1.
The equations of motion which follow from (1.58) are

Ḣ =
1

2M2
p

φ̇2 (1.61)

H2 =
1

3M2
p

ρφ (1.62)

φ̈ + 3Hφ̇ = V ′(φ) . (1.63)

Note that the evolution equation (1.63) for the phantom field is same as that
of the normal scalar field with inverted potential allowing the field with zero
initial kinetic energy to roll up the hill; i.e., from lower value of potential to
higher one. At the first look such a situation looks pathological. However, at
present, the situation in cosmology is remarkably tolerant to any pathology
if it can lead to a viable model.

As mentioned above the equation of state parameter with super negative
values leads to Big Rip which can be avoided in a particular class of models.
For instance, let us consider consider a model with

V (φ) = V0

[
cosh

(
αφ

Mp

)]−1

. (1.64)

Due to its peculiar properties, the phantom field, released at a distance from
the origin with zero kinetic energy, moves to wards the top of the potential
and crosses over to the other side and turns ba ck to execute the damped
oscillation about the maximum of the potential (see Fig.1.2). After a certain
period of ti me the motion ceases and the field settles on the top of the
potential permanently to mimic the de-Sitter like behavior (w = −1).

• Rolling tachyon

It was recently suggested that rolling tachyon condensate, in a class of string
theories, might have interesting cosmological consequences. It was shown by
Sen[16] that the decay of D-branes produces a pressure-less gas with finite
energy density that resembles classical dust. Rolling tachyon has an interest-
ing equation of state whose parameter smoothly interpolates between −1 and
0. Attempts have been made to construct viable cosmological model using
rolling tachyon field as a suitable candidate for inflaton, dark matter or dark
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Fig. 1.2. Evolution of the phantom field is shown for the model described by eqn.
(1.64). Due to the unusual behavior, the phantom field, released with zero kinetic
energy away from the origin, moves towards the top of the potential. It sets into
the damped oscillations about φ = 0 and ultimately settles there permanently.

energy (see Ref.[3] and references therein for details). As for the inflation, the
rolling tachyon models are faced with difficulties associated with reheating.
In what follows we shall consider the tachyon potentials field to obtain viable
models of dark energy.

The tachyon dynamics (on a non-BPS) D3 brane can be described by an
effective field theory with the following action

S =

∫
d4x

{√−g

(
R

2κ2

)

− V (φ)
√
−det(gab + ∂aφ∂bφ)

}
. (1.65)

The tachyon field measures the varying brane tension and is such that V (φ =
∞) = 0 and V (φ = 0) = 1. The effective potential obtained in open string
theory has the form

V (φ) =
T3

cosh
(

φ
φ0

) , (1.66)

where φ0 =
√

2 for superstring and φ0 = 2 in case of bosonic string. We should
note that the potential for the rolling scalar contains no free parameter to tune
which is normally required for a viable cosmological evolution. For instance,
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the late time evolution of the scalar field with potential (1.66) can mimic
the current accelerated expansion of universe provided the brane tension T3

could be tuned to the critical energy density at the current epoch. However,
this is absolutely out of scope from viewpoint of string theory as it leads to
very small masses for massive string states. We are, therefore, led to think
of another mechanism which would affect the D-brane tension and the slope
of the scalar field potential without touching the string length and the string
coupling constant. We shall hereafter show that these features are shared by
the warped compactification. Consider the following warped metric

ds2
10 = β(yi)gabdxadxb + β−1(yi)ĝijdyidyj , (1.67)

where the coordinates yi represent the compact dimensions, and ĝij represent
metric in the compact space. At some point in the y-space the factor β can
be small. This corresponds to a scenario in which the brane moves in the
compact dimensions reducing its tension. The tachyon action at a point y in
the y-space becomes

S = −
∫

d4xβ2V (φ)
√

−det(gab + β−1∂aφ∂bφ) .

(1.68)

Normalizing the scalar field as φ →
√

βφ, one finds the standard Dirac-Born-
Infeld (DBI) type action

S = −
∫

d4xV (φ)
√

−det(gab + ∂aφ∂bφ) , (1.69)

where now the potential is

V (φ) =
V0

cosh
(√

βφ
φ0

) , with V0 = β2T3 . (1.70)

The constant V0 can be less than T3 for small values of β with β < 1. In
sections to follow, we shall also consider other forms of tachyon potential
which can be inspired by string theory and others which are introduced by
purely phenomenological considerations.

In a spatially flat Friedmann-Robertson-Walker (FRW) background, The
energy density ρ and the pressure p which follow from action (1.65) are given
by,

ρ =
V (φ)√
1 − φ̇2

, (1.71)

p = −V (φ)

√
1 − φ̇2 . (1.72)

The equation of motion of the rolling scalar field follows from Eq. (??)
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φ̈

1 − φ̇2
+ 3Hφ̇ +

Vφ

V (φ)
= 0 , (1.73)

which is equivalent to the conservation equation

ρ̇

ρ
+ 3H(1 + w) = 0 . (1.74)

The tachyon dynamics is very different from the standard field case. Irrespec-
tive of steepness of tachyon potential, its equation of state parameter varies
between 0 and −1. Thus reheating is impossible to achieve in this model, if
tachyon field is to be an inflaton. However, it can be used as a candidate of
dark energy as shown in one of the following sections.

We now look for the potential which can lead to power law type of expan-
sion in case of tachyon field. In this case, the expression for (1 + w) is also
given by the Eq. (1.50) but the equation of state parameter w has a simple
relation with φ̇

φ̇2 = 1 + w . (1.75)

Using (1.50) and (1.75) we get

φ(t) =

∫ [
− 2Ḣ

3qH2

]
dt . (1.76)

From Eqs. (1.48), (1.50) and (1.72) we can express the potential V (t) as

V (t) = (−w)1/2ρ = H2/qA1/q

(
1 +

2

3q

Ḣ

H2

)
. (1.77)

In case of Born-Infeld scalar field, Eqs. (1.76) and (1.77) determine the field
φ(t) and the potential V (t) for given scale factor a(t). In case of power law
expansion a(t) ∝ tn, we obtain from (1.76) and (1.77)

φ(t) − φ0 =

(
2

3nq

)1/2

t , (1.78)

V (t) = n2/qA1/q

(
1 − 2

3nq

)1/2

t−2/q , (1.79)

which finally lead to
V (φ) = V0φ

−2/q . (1.80)

We should note that the power law expansion in the present case takes place
with the constant velocity of the the field (see Eq. (1.78)) which is typical
of Born-Infeld dynamics. For q = 1 corresponding to standard GR, (1.80)
reduces to inverse square potential earlier obtained by Padmanabhan[18]. In
case of RS which corresponds to q = 2, we get V (φ) ∼ 1/φ. In case of high
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energy GB regime (= 2/3), the potential which can implement power law
expansion turns out to be

V (φ) =
V0

φ3
. (1.81)

This sort of hierarchy of potentials is understandable; in GR the required
potential behaves as 1/φ2 whereas in RS scenario due to the extra brane
damping, the power law expansion can be achieved with the less inverse
power of field . In the high energy GB regime, the Hubble damping is weaker
than the standard FRW cosmology, thereby requiring larger inverse power of
the field.

1.1.3 Current acceleration and observations in brief

The direct evidence of current acceleration of universe is related to the ob-
servation of luminosity distance of high redshift supernovae by two groups
independently in 1998[1, 2]. The luminosity distance at high redshift is larger
in dark energy dominated universe. Thus supernovae would appear fainter
in case the universe is dominated by dark energy. The luminosity distance
can be used to estimate the apparent magnitude m of the source given its
absolute magnitude M . using the following relation often used in astronomy

m − M = 5 log

(
DL

Mpc

)
+ 25 . (1.82)

In order to get a feeling of the phenomenon (the reader is referred to excellent
review of Perivolaropoulos[19] for details) let us consider two supernovae
1997ap at redshift z = 0.83 with m = 24.32 and 1992P at z = 0.026 with
apparent magnitude M = 16.08. Since the supernovae are supposed to be
the standard candles, their absolute magnitude is same. Secondly we shall
use the fact that DL(z) ' z/H0 for small value of z. Eq.(1.82) then yields
the following estimate

H0DL ' 1.16 (1.83)

The theoretical estimate for the luminosity distance for flat universe tells us

DL ' 0.95H−1
0 , Ω(0)

m = 1 , (1.84)

DL ' 1.23H−1
0 , Ω(0)

m = 0.3, Ω
(0)
Λ = 0.7 . (1.85)

The above estimate clearly lands a strong support to the case of dark energy
dominated universe (see Ref.[19] for details).

An interesting proposal for visualizing acceleration in supernovae data
was proposed in Ref.[20]. The authors displayed the data with error bars on
the phase plane (ȧ, a), see Fig.1.3 for flat models with different values of Ωm.
The data at low red shift clearly confirms the presence of accelerated phase
but due to large error bars it is not possible to choose a particular model.
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The later requires the interplay between the low redshift and the high redshift
data[20]. The observations related to CMB and large scale structures inde-
pendently support the dark energy scenario. The CMB anisotropies observed
originally by COBE in 1992 and the recent WMAP data overwhelmingly
support inflationary scenario. The location of the major peak around l = 220
tells us that Ωtot ' 1. Since the baryonic matter in the universe amounts
to only 4%. Nearly 30% of the total energy content is contributed by non-
luminous component of non-barionic nature with dust like equation of state
dubbed cold dark matter. There is then a deficit of about 70 %–the miss-
ing component, known as dark energy. The CMB and the large scale galaxy
clustering data is complimentary to supernova results; the combined analysis
strongly points towards Ωm = 0.3 and ΩΛ = 0.7 universe.

However, in view of the fine tuning problem, it looks absolutely essential
that dark energy be represented by a variable equation of state. At the same
time, the quest for dark energy metamorphosis continues at the observational
level.

Fig. 1.3. The supernovae data points are displayed in the phase plane (ȧ, a). The
solid curves correspond to flat cosmological models for different values of Ωm. The
bottom and top curves corresponds to Ωm = 0.0, 1.0 respectively from[20]
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1.2 Cosmological constant Λ

Historically Λ was introduced by Einstein to achieve a static solution which
turned out to be unstable. However, after the Hubble’s redshift discovery
in 1929, the motivation for having Λ was lost and it was dropped. Since
then the cosmological constant was introduced time and again to remove the
discrepancies between theory and observations and withdrawn when these
discrepancies were resolved. It had come and gone several times making its
come back finally, seemingly for ever!, in 1998 through supernova Ia observa-
tions. Recently much efforts have gone in understanding Λ in the frame work
of quantum fields and string theory. In what follows we shall briefly mention
these issues.

• Λ as a natural free parameter of classical gravity

It should be noted that a term proportional to the the metric gµν is
missing on the right hand side of Einstein equations (1.2). Indeed the Bianch
identity ∆νGµ

ν = 0 implies that

Gµν = +κTµν − Λgµν , (1.86)

with
∇νTµν = 0 , (1.87)

where Tµν is a symmetric tensor, and κ and Λ are constants. The demand
that it should in the first approximation reduce to the Newtonian equation
for gravitation will require Tµν to represent the energy momentum tensor
for matter and κ = 8πG/c2 with Λ being negligible at the stellar scale. The
Einstein equations should then read as

Gµν ≡ Rµν − 1

2
gµνR = 8πGTµν − Λgµν . (1.88)

Note that the constant Λ enters into the equation naturally. It was intro-
duced by Einstein in an ad-hoc manner to have a physically acceptable static
model of the Universe and was subsequently withdrawn when Friedmann
found the non-static model with acceptable physical properties. We would
however like to maintain that it appears in the equation as naturally as the
stress tensor Tµν and hence should be considered on the same footing[21]. As
for the classical physics, the cosmological constant is a free parameter of the
theory and its numerical value should be determined from observations.

• Λ arising due to vacuum fluctuations.
Cosmological constant can be associated with vacuum fluctuations in the

quantum field theoretic context. Though the arguments are still at the level
of numerology but may have far reaching consequences. Unlike the classical
theory the cosmological constant Λ in this scheme is no longer a free pa-
rameter of the theory. Broadly the line of thinking takes the following route.
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The quantum effects in GR become important when the Einstein Hilbert ac-
tion becomes of the order of Planck’s constant; this happens at the Planck’s
length Lp =

√
(8πG) ∼ 10−32cm corresponding to Planck energy which is

of the order of M4
p ∼ 1072GeV 4. In the language of field theory, a system is

described by a set of quantum fields. The ground state energy dubbed zero
point energy or vacuum energy of a free quantum field is infinite.

This contribution is related the ordering ambiguity of fields in the classi-
cal Lagrangian and disappears when normal ordering is adopted. Since this
procedure of throwing out the vacuum energy is ad hoc, one might try to
cancel it by introducing the counter terms. The later, however requires fine
tuning and may be regarded as unsatisfactory. Whether or not the zero point
energy in field theory is realistic is still a debatable question. The divergence
is related to the modes of very small wave length. As we are ignorant of
physics around Planck scale we might be tempted to introduce a cut off at
Lp and associate Λ with this fundamental scale. Thus we arrive at an esti-

mate of vacuum energy ρv ∼ M4
p (corresponding mass scale− MV ∼ (ρ

1/4
V )

which is away by 120 orders of magnitudes from the observed value of this
quantity. The vacuum energy may not be felt in the laboratory but plays
important role in GR through its contribution to the energy momentum ten-
sor as < Tµν >0= −ρV gµν and appears on the right hand side of Einstein
equations

Rµν − 1

2
gµνR = 8πG (Tµν+ < Tµν >0) . (1.89)

The problem of zero point energy is naturally resolved by invoking super-
symmetry which has many other remarkable features. In the supersymmetric
description, every bosonic degree of freedom has its Fermi counter part which
contributes zero point energy with opposite sign compared to the bosonic de-
gree of freedom thereby doing away with the vacuum energy. It is in this
sense the supersymmetric theories do not admit a non-zero cosmological con-
stant. However, we know that we do not leave in supersymmetric vacuum
state and hence it should be broken. For a viable supersymmetric scenario,
for instance if it is to be relevant to hierarchy problem, the suppersymmetry
breaking scale should be around Msusy ∼ 103GeV . We are still away from
the observed value by many orders of magnitudes. At present we do not know
how Planck scale or SUSY breaking scales is related to the observed vacuum
scale.

• Λ from string theory− de-Sitter vacuua a la KKLT

In view of the observations related to supernova, large scale clustering and
Micro wave background, the idea of late time acceleration has reached the
level of general acceptability. It is, therefore, not surprising that tremendous
efforts have recently been made in finding out de-Sitter solutions in super-
gravity and string theory. Using flux compactification, Kachru, Kallosh, Linde
and Trivedi (KKLT) formulated a procedure to construct de-Sitter vacua of
type IIB string theory[22]. They demonstrated that the life time of the vacua
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is larger that the age of universe and hence these solutions can be considered
as stable for practical purposes. Although a fine-tuning problem of Λ still
remains in this scenario, it is interesting that string theory gives rise to a
stable de-Sitter vacua with all moduli fixed. We note that a vast number of
different choices of fluxes leads to a complicated landscape with more than
10100 vacua. We should believe, if we can, that we live in one of them!. .

1.2.1 Fine tuning problem

Inspite of the fact that introduction of Λ does not require an adhoc assump-
tion and it is also not ruled out by observation as a candidate of dark energy;
the scenario base upon Λ is faced with the worst type of fine tuning problem.
The numerical value of Λ at early epochs should be tuned to a fantastic accu-
racy so as not to disturb todays physics. In order to appreciate the problem,
let us consider the following ratio

ρΛ

3H2(t)
8πG

= ΩΛ

(
H0

H(t)

)2

, (1.90)

where ΩΛ = (ρΛ/ρc) ' 0.7. It will not disturb our estimate if we assume
radiation domination today. In that case the ratio H/H0 scales as a−2 and
since the temperature is inversely proportional to the scale factor a, we find

ρΛ

3H2(t)
8πG

= 0.7

(
T0

T

)4

. (1.91)

Since at the Planck (T = Tp = Mp ) epoch T0/T ' 10−31, the ratio of
ρΛ to 3H2/8πG turns out to be of the order of 10−123. On the theoretical
ground, such a fine tuning related to the scale of cosmological constant is
not acceptable. This problem led to the investigation of scalar field models
of dark energy which can alleviate this problem to a considerable extent.

1.3 Dynamically evolving scalar field models of dark

energy

Before entering into the detailed investigations of field dynamics, we shall
first examine some of the general constraints on scalar field Lagrangian if it
is to be relevant to cosmology.

1.3.1 Broad features of scalar field dynamics and cosmological

relevance of scaling solutions

The scalar field aiming to describe dark energy is often imagined to be a relic
of early universe physics. Depending upon the model, the scalar field energy
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density may be larger or smaller than the background (radiation/matter) en-
ergy density ρB . In case it is larger than the back ground density, the density
ρφ should scale faster than ρB allowing radiation domination to commence
which requires a steep scalar field potential. In this case the field energy den-
sity overshoots the background and becomes sub dominant to it. This leads
to the locking regime for the scalar field. The field unlocks the moment its
energy density becomes comparable to the background. Its further course of
evolution crucially depend upon the form of field potential. In order to obtain
viable dark energy models, we require that the energy density of the scalar
field remains unimportant during radiation and matter dominant eras and
emerges only at late times to give rise to the current acceleration of universe.
It is then important to investigate cosmological scenarios in which the en-
ergy density of the scalar field mimics the background energy density. The
cosmological solutions which satisfy this condition is called scaling solutions

[23]. Namely scaling solutions are characterised by the relation

ρB/ρφ = const . (1.92)

We shall shortly demonstrate that exponential potentials give rise to scal-
ing solutions for a minimally coupled scalar field, allowing the field energy
density to mimic the background being sub-dominant during radiation and
matter dominant eras. In this case, for any generic initial conditions, the field
would sooner or later enter into the scaling regime (see Fig.1.4). This allows
to alleviate the fine tuning problem to a considerable extent. The same thing
is true in case of the undershoot, i.e., when the field energy is smaller as
compared to the background. In Fig.1.5, we have displayed a cartoon depict-
ing the field dynamics in absence of scaling solutions. For instance, we shall
see later, scaling solutions , which could mimic realistic background, do not
exist in case of phantom and tachyon fields. These models are plagued with
additional fine tuning problem.

Scaling solutions exist in case of a steep exponential potential V (φ) ∼
exp(λφ/Mp) with λ2 > 3(1 + wm) ( the field dominated case corresponds
to λ2 < 3(1 + wm) whereas λ2 < 2 gives rise to ever accelerating universe).
Nucleosynthesis puts stringent restriction on any additional degree of freedom
which translates into a constraint on the slope of the exponential potential
λ.

• Late time evolution and exit from scaling regime

Obviously, scaling solution is non-accelerating as the equation of state of the
field φ equals to that of the background fluid (wφ = wm) in this case. One
then requires to introduce a late time feature in the potential allowing to exit
from the scaling regime. Broadly there are two ways to get the required late
time behavior for a minimally coupled scalar field:
(i) The potential changes into a power law type V ∼ φ2q which gives late
time acceleration for q < 1/2 (e.g., V (φ) = V0 [cosh(αφ/Mp) − 1]

q
, q > 0
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Fig. 1.4. Desired evolution of background and scalar field energy densities ρB and
ρφ. In case of overshoot (solid line) and undershoot(dotted line), the field energy
density (for different initial conditions) joins the attractor solution which mimics
the background (scaling solution). At late times, the field energy density exits the
scaling regime to become dominant.
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Fig. 1.5. Evolution of ρB , ρφ in absence of scaling solution. The scalar field after its
energy density overshoots the background gets into locking regime where it mimics
cosmological constant. It waits till its energy density becomes comparable to the
background; it then begins evolving and takes over the background to account for
the current acceleration
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[24]).
(ii) The potential becomes shallow to support the slow-roll at large values
of the field [25] allowing the field energy density to catch up with the back-
ground; such a solution is referred to a tracker.

The scalar field models in absence of the above described features suffer
from the fine tuning problem similar to the case of cosmological constant.

Scalar fields should not interfere with the thermal history of universe, they
are thus should satisfy certain constraints. An earlier constraint in the history
of universe follows from nucleosynthesis which we briefly describe below[11].

• Nucleosynthesis constraint

The introduction of an extra degree of freedom (on the top of those already
present in the standard model of particle physics) like a scalar field might
effect the abundance of light elements in the radiation dominated epoch.
The presence of a minimally coupled scalar field effects the expansion rate
at a given temperature. This effect becomes crucial at the nucleosynthesis
epoch with temperature round 1MeV when the weak interactions (which
keep neutrons and protons in equilibrium ) freeze-out. The observationally
allowed range of expansion rate at this temperature leads to a bound on the
energy density of the scalar field

Ωφ(T ∼ 1MeV ) <
7∆Neff/4

10.75 + 7∆Neff/4
, (1.93)

where ∆Neff are the additional relativistic degrees of freedom and 10.75 is
the effective number of standard model degrees of freedom. A conservative
bound on the additional degrees of freedom used in the literature is given by
∆Neff ' 1.5. Equation (1.93) then yields a constraint

Ωφ(T ∼ 1MeV ) < 0.2 , (1.94)

which results into a restriction on the slope of the potential (see section V).

1.3.2 Autonomous systems, their fixed points and stability

The dynamical systems which play an important role in cosmology belong to
the class of the so called autonomous systems. In what follows we shall analyze
the dynamics in great details of a variety of scalar field models. We first
briefly record some basic definitions related to dynamical systems. Though,
for simplicity we shall consider the system of two first order equations, the
analysis can be extended to a system of any number of equations. Let us
consider the system of two coupled differential equations for x(t) and y(t)

ẋ = f(x, y, t) ,

ẏ = g(x, y, t) , (1.95)

where f and g are well behaved functions. System (1.95) is said to be au-
tonomous if f and g do not contain explicit time dependent. The dynamics
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of these systems can be analysed in a standard way.
• Fixed or critical points
A point (xc, yc) is said to be a fixed point or critical point of the autonomous
system if and only if

(f, g)|xc,yc
= 0 (1.96)

and a critical point (xc, yc) is called an attractor in case

(x(t), y(t)) → (xc, yc) for t → ∞ . (1.97)

• Stability around the fixed points
The stability of each point can be studied by considering small perturbations
δx and δy around the critical point (xc, yc), i.e.,

x = xc + δx , y = yc + δy . (1.98)

Substituting into Eqs. (1.104) and (1.105), leads to the first-order differential
equations:

d

dN

(
δx
δy

)
= M

(
δx
δy

)
, (1.99)

where matrix M depends upon xc and yc


M =

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)

(x=xc,y=yc)




The general solution for the evolution of linear perturbations can be writ-
ten as

δx = C1exp(µ1N) + C2exp(µ2N) , (1.100)

δy = C3exp(µ1N) + C4expp(µ2N) , (1.101)

where µ1 and µ2 are the eigenvalues of matrix M. Thus the stability around
the fixed points depends upon the nature of eigenvalues. One generally uses
the following classification:

– (i) Stable node: µ1 < 0 and µ2 < 0.
– (ii) Unstable node: µ1 > 0 and µ2 > 0.
– (iii) Saddle point: µ1 < 0 and µ2 > 0 (or µ1 > 0 and µ2 < 0).
– (iv) Stable spiral: The determinant of the matrix M is negative and the

real parts of µ1 and µ2 are negative.

1.3.3 Quintessence

Let us consider a minimally coupled scalar field φ with a potential V (φ):

L =
1

2
εφ̇2 + V (φ) , (1.102)
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where ε = +1 for an ordinary scalar field. Here we allow the possibility of
phantom (ε = −1) as we see in the next subsection.

In what follows we shall consider a cosmological evolution when the uni-
verse is filled by a scalar field φ and a barotropic fluid with an equation of
state wm = pm/ρm. We introduce the following dimensionless quantities:

x ≡ κφ̇√
6H

, y ≡ κ
√

V√
3H

, λ ≡ − Vφ

κV
, Γ =

V Vφφ

V 2
φ

. (1.103)

For the Lagrangian density (1.102) the Einstein equations can be written in
the following autonomous form (see Ref.[3] for details) :

dx

dN
= −3x +

√
6

2
ελy2

+
3

2
x
[
(1 − wm)εx2 + (1 + wm)(1 − y2)

]
, (1.104)

dy

dN
= −

√
6

2
λxy

+
3

2
y
[
(1 − wm)εx2 + (1 + wm)(1 − y2)

]
, (1.105)

dλ

dN
= −

√
6λ2(Γ − 1)x , (1.106)

together with a constraint equation

εx2 + y2 +
κ2ρm

3H2
= 1 , (1.107)

where N ≡ log (a). We note that the equation of state w and the fraction of
the energy density Ωφ for the field φ is

wφ ≡ p

ρ
=

εx2 − y2

εx2 + y2
, Ωφ ≡ κ2ρ

3H2
= εx2 + y2 . (1.108)

We also define the total effective equation of state:

weff ≡ p + pm

ρ + ρm
= wm + (1 − wm)εx2 − (1 + wm)y2 . (1.109)

An accelerated expansion occurs for weff < −1/3. In this subsection we shall
consider the normal scalar field (ε = +1).

Constant λ

From Eq. (1.103) we find that the constant λ corresponds to an exponential
potential [23]:

V (φ) = V0e
−κλφ . (1.110)
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Name x y Range Stability Ωφ γφ

(a) 0 0 ∀λ, γ s. p. for 0 < γ < 2 0 –

(b1) 1 0 ∀λ,γ un. n. for λ <
√

6 1 2

s p for λ >
√

6

(b2) -1 0 ∀λ, γ un. n. for λ > −
√

6 1 2

s. p. for λ < −
√

6

(c) λ/
√

6 [1 − λ2/6]1/2 λ2 < 6 st. n. for λ2 < 3γ 1 λ2/3
st. n. for 3γ < λ2 < 6

(d) (3/2)1/2 γ/λ [3(2 − γ)γ/2λ2]1/2 λ2 > 3γ st. n. for 3γ < λ2 3γ/λ2 γ
< 24γ2/(9γ − 2)
st. sp. for λ2 >
24γ2/(9γ − 2)

Table 1.1. The properties of the critical points (s=saddle, p=point, un=unstable,
n=node, st=stable, sp=spiral) from Ref.[3]. Here γ is defined by γ ≡ 1 + wm.

In this case Eq. (1.106) is dropped from the dynamical system. One can
obtain the fixed points by setting dx/dN = 0 and dy/dN = 0 in Eqs. (1.104)
and (1.105). This is summarized in Table I.

In the next section we shall extend our analysis to the more general case
in which dark energy is coupled to dark matter. The readers may refer to
the next section in order to know precise values of the eigenvalues in a more
general system. From TABLE I we find that there exists two stable fixed
points (c) and (d). The point (c) is a stable node for λ2 < 3γ. Since the
effective equation of state is weff = wφ = −1+λ2/3, the accelerated expansion
occurs for λ2 < 2 in this case. The point (d) corresponds to a scaling solution
in which the energy density of the field φ decreases proportionally to that of
the barotropic fluid (γφ = γ). Although this fixed point is stable for λ2 > 3γ,
we do not have an accelerated expansion in the case of non relativistic dark
matter.

The above analysis of the critical points shows that one can obtain an
accelerated expansion provided that the solutions approach the fixed point
(c) with λ2 < 2, in which case the final state of the universe is the scalar-field
dominated one (Ωφ = 1). The scaling solution (d) is not viable to explain the
late-time acceleration. However this can be used to provide the cosmological
evolution in which the scalar field decreases proportionally to that of the
matter or radiation. If the slope of the exponential potential becomes shallow
to satisfy λ2 < 2 near to the present, the universe exits from the scaling regime
and approaches the fixed point (c) giving rise to an accelerated expansion.

Dynamically changing λ

Exponential potentials correspond to constant λ and Γ = 1. Let us consider
the potential V (φ) along which the field rolls down toward plus infinity (φ →
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∞) This means that x > 0 in Eq. (1.106). If the condition

Γ > 1 , (1.111)

is satisfied, λ decreases toward 0. Hence the slope of the potential becomes flat
as λ → 0, thereby giving rise to an accelerated expansion at late times. The
condition (1.111) is regarded as the tracking condition under which the energy
density of φ eventually catches up that of the fluid. In order to construct
viable quintessence models, we require that the potential should satisfy the
condition (1.111). For example, one has Γ = (n + 1)/n > 1 for the inverse
power-law potential V (φ) = V0φ

−n with n > 0. This means that the tracking
occurs for this potential.

When Γ < 1 the quantity λ increases toward infinity. Since the potential
is steep in this case, the energy density of the scalar field becomes negligible
compared to that of the fluid. Hence we do not have an accelerated expansion
at late times

In order to obtain the dynamical evolution of the system we need to solve
Eq. (1.106) together with Eqs. (1.104) and (1.105). Although λ is dynami-
cally changing, one can exploit the discussion of constant λ by considering
“instantaneous” critical points.

1.3.4 Phantoms

The phantom field corresponds to a negative kinematic sign, i.e, ε = −1 in
Eq. (1.102). Let us consider the exponential potential given by Eq. (1.110).
In this case Eq. (1.106) is dropped from the dynamical system. In Table 1.2
we show fixed points for the phantom field. The only stable solution is the
scalar-field dominant solution (b), in which case the equation of the field φ is

wφ = −1 − λ2/3 . (1.112)

Hence wφ is less than −1. The scaling solution (c) is unstable and exists only
for wm < −1. We note that the effective equation of state of the universe
equals to wφ, i.e., weff = −1 − λ2/3. In this case the Hubble rate evolves as

H =
2

3(1 + weff)(t − ts)
, (1.113)

where ts is an integration constant. Hence H diverges for t → ts. This is
so-called the Big Rip singularity at which the Hubble rate and the energy
density of the universe exhibit divergence. We note that the phantom field
rolls up the potential hill in order to lead to the increase of the energy density.

When the potential of the phantom is different from the exponential type,
the quantity λ is dynamically changing in time. In this case the point (b)
in Table 1.2 can be regarded as an instantaneous critical point. Then the
equation of state wφ varies in time, but the field behaves as a phantom since
wφ = −1 − λ2/3 < −1 is satisfied.



28 M. Sami

Name x y Range Stab. Ωφ wφ

(a) 0 0 No for 0 ≤ Ωφ ≤ 1 s. p. 0 –

(b) −λ/
√

6 [1 + λ2/6]1/2 All values st. n. 1 −1 − λ2/3

(c)
√

6(1+wm)
2λ

[
−3(1−w2

m)

2λ2 ]1/2 wm < −1 s. p. −3(1+wm)

λ2 wm

Table 1.2. The properties of the critical points (s=saddle, p=point, n=node,
st=stable) for ε = −1 (from[3]).

1.3.5 Tachyons

We shall take into account the contribution of a barotropic perfect fluid with
an equation of state pB = (γ − 1)ρB . Then the background equations of
motion are for rolling tachyon system are

Ḣ = − φ̇2V (φ)

2M2
p

√
1 − φ̇2

− γ

2

ρB

M2
p

, (1.114)

φ̈

1 − φ̇2
+ 3Hφ̇ +

Vφ

V
= 0 , (1.115)

ρ̇B + 3γHρB = 0 , (1.116)

together with a constraint equation:

3M2
p H2 =

V (φ)√
1 − φ̇2

+ ρB . (1.117)

Defining the following dimensionless quantities:

x = φ̇ , y =

√
V (φ)√

3HMp

, (1.118)

we obtain the following autonomous equations

dx

dN
= −(1 − x2)(3x −

√
3λy) , (1.119)

dy

dN
=

y

2

(
−
√

3λxy − 3(γ − x2)y2

√
1 − x2

+ 3γ

)
, (1.120)

dλ

dN
= −

√
3λ2xy(Γ − 3/2) . (1.121)

where

λ = −MpVφ

V 3/2
, Γ =

V Vφφ

V 2
φ

. (1.122)
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We note that the allowed range of x and y is 0 ≤ x2 + y4 ≤ 1 from the
requirement: 0 ≤ Ωφ ≤ 1. Hence both x and y are finite in the range 0 ≤
x2 ≤ 1 and 0 ≤ y ≤ 1. The effective equation of state for the field φ is

γφ =
ρφ + pφ

ρφ
= φ̇2 , (1.123)

which means that γφ ≥ 0. The condition for inflation corresponds to φ̇2 < 2/3.

Constant λ

From Eq. (1.121) we find that λ is a constant for Γ = 3/2. This case corre-
sponds to an inverse square potential (For details, see Ref. [3])

V (φ) = M2φ−2 . (1.124)

The scalar-field dominated solution (Ωφ = 1), in this case, corresponds
to γφ = λ2/3 which can lead to an accelerated expansion for λ2 < 2. No
scaling solution which could mimic radiation or matter exist in this case (see
Ref.[3]). Since λ is given by λ = 2Mp/M , the condition for an accelerated
expansion gives a super-Planckian value of the mass scale, i.e., M >

√
2Mp.

Such a large mass is problematic since this shows the breakdown of classical
gravity. This problem can be alleviated for the inverse power-law potential
V (φ) = M4−nφ−n, as we will see below.

Dynamically changing λ

When the potential is different from the inverse square potential given in
Eq. (1.124), λ is a dynamically changing quantity. As we have seen in the
subsection of quintessence, there are basically two cases: (i) λ evolves toward
zero, or (ii) |λ| increases toward infinity. The case (i) is regarded as the
tracking solution in which the energy density of the scalar field eventually
dominates over that of the fluid. This situation is realized when the potential
satisfies the condition

Γ > 3/2 , (1.125)

as can be seen from Eq. (1.121). The case (ii) corresponds to the case in
which the energy density of the scalar field becomes negligible compared to
the fluid.

As an example let us consider the inverse power-law potential given by

V (φ) = M4−nφ−n , n > 0 . (1.126)

In this case one has Γ = (n + 1)/n. Hence the scalar-field energy density
dominates at late times for n < 2.
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x y Ωφ weff

−
√

6Q
3(1−wm)

0 2Q2

3(1−wm)
1

1 0 1 1

−1 0 1 1
λ
√

6
[(1 − λ2

6
)]1/2 1 −1 + λ2

3
√

6(1+wm)
2(λ+Q)

[
2Q(λ+Q)+3 (1−w2

m)

2(λ+Q)2
]1/2 Q(λ+Q)+3 (1+wm)

(λ+Q)2
λwm−Q
(λ+Q)

Table 1.3. Q 6= 0, from[3]

There exist a number of potentials that exhibit the behavior |λ| → ∞
asymptotically. For example V (φ) = M 4−nφ−n with n > 2 and V (φ) =
V0e

−µφ with µ > 0. In the latter case one has Γ = 1. In these cases, pressure
less dust ia late time attractor where as the accelerated expansion can occur
as a transient phenomenon. Extra fine tuning is needed in this case to obtain
the current acceleration.

1.4 Scaling solutions in models of coupled quintessence

As we have already seen in the previous section, exponential potentials give
rise to scaling solutions for a minimally coupled scalar field, allowing the
field energy density to mimic the background being sub-dominant during
radiation and matter dominant eras. In the previous section we found out
the expression for Ωφ for scaling solution which after combining with the
nucleosynthesis constraint (1.94) gives

Ωφ ≡ ρφ

ρφ + ρm
=

(1 + wm)

λ2
< 0.2 → λ > 5 . (1.127)

In this case, however, one can not have an accelerated expansion at late
times since ρφ mimics background. We briefly mentioned as how to exit the
scaling regime, in models of minimally coupled scalar fields, to account for
the current acceleration of universe.

If the scalar field φ is coupled to the background fluid, it is possible
to obtain an accelerated expansion at late-times even in the case of steep
exponential potentials. In this section we implement the coupling Q between
the field and the barotropic fluid and show that scaling solutions can also
account for accelerated expansion. The evolution equations in presence of
coupling acquire the form

ρ̇φ + 3H(1 + wφ)ρφ = −Qρmφ̇ (1.128)

ρ̇m + 3H(1 + wm)ρm = Qρmφ̇ , (1.129)

Ḣ = −1

2

[
(1 + wm)ρφ + (1 + wm)ρm

]
. (1.130)
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H2 =
ρφ + ρm

3
, (1.131)

where coupling Q is field dependent in general. For simplicity, we shall as-
sume constant coupling. The autonomous form of equations for exponential
potential in presence of coupling takes the following form

dx

dN
= −3x +

√
6

2
λy2 +

3

2
x
[
(1 − wm)εx2 + (1.132)

(1 + wm)(1 − c1y
2)
]
−

√
6Q

2
(1 − x2 − y2) ,

dy

dN
= −

√
6

2
λxy +

3

2
y
[
(1 − wm)x2 + (1 + wm)(1 − y2)

]
. (1.133)

We display the critical points for coupled quintessence in the table in which
the last entry corresponds to scaling solution with effective equation of state
weff = 0 for Q = 0 consistent with earlier analysis. It is remarkable that
weff → −1 for Q >> λ. Thus scaling solutions can account for acceleration
in presence of coupling between field and the barotropic fluid. Unfortunately,
they are not acceptable from CMB constraints. The general investigations of
perturbations for coupled quintessence require further serious considerations.

1.5 Quintessential inflation

In this section we shall work out the example of quintessential inflation which
is an attempt to describe inflation and dark energy with a single scalar field.
The description to follow would clearly demonstrate the utility of the tools
developed in earlier sections. The problem was first addressed by Peebles and
Vilenkin [26]. They introduced a potential for the field φ which allowed it to
play the role of the inflaton in the early Universe and later to play the role of
the quintessence field. To do this it was important that the potential did not
have a minimum in which the inflaton field would completely decay at the
end of the initial period of inflation. They proposed the following potential

V (φ) =

{
λ(φ4 + M4) for φ < 0 ,

λM4

1+(φ/M)α for φ ≥ 0 .
(1.134)

For φ < 0 we have ordinary chaotic inflation. Much later on, for φ > 0
the universe once again begins to inflate but this time at the lower energy
scale associated with quintessence. Reheating after inflation should have pro-
ceeded via gravitational particle production because of the absence of the
potential minimum, but this mechanism is very inefficient and leads to an
unwanted relic gravity wave background. The main difficulty for the realistic
construction of quintessential inflation is that we need a flat potential dur-
ing inflation but also require a steep potential during radiation and matter
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dominated periods. There are some nice resolutions of quintessential inflation
in braneworld scenarios as we shall see below (see review.[27] and references
therein on this theme). In these models, the scalar field exhibits the proper-
ties of tracker field. As a result it goes into hiding after the commencement
of radiation domination; it emerges from the shadow only at late times to
account for the observed accelerated expansion of universe. These models
belong to the category of non oscillating models in which the standard re-
heating mechanism does not work. In this case, one can employ an alternative
mechanism of reheating via quantum-mechanical particle production in time
varying gravitational field at the end of inflation. However, then the inflaton
energy density should red-shift faster than that of the produced particles so
that radiation domination could commence. And this requires a steep field
potential, which of course, cannot support inflation in the standard FRW
cosmology. This is precisely where the brane[29] assisted inflation comes to
our rescue. In the 4+1 dimensional brane scenario inspired by the Randall-
Sundrum (RS) model, the standard Friedman equation is modified to

H2 =
1

3M2
p

ρ

(
1 +

ρ

2λb

)
, (1.135)

The presence of the quadratic density term ρ2/λb (high energy correc-
tions) in the Friedmann equation on the brane changes the expansion dy-
namics at early epochs (see Ref[29] for details on the dynamics of brane
worlds) Consequently, the field experiences greater damping and rolls down
its potential slower than it would during the conventional inflation. This effect
is reflected in the slow-roll parameters which have the form [29]

ε = εFRW
1 + V/λb

(1 + V/2λb)
2 ,

η = ηFRW (1 + V/2λb)
−1

, (1.136)

where

εFRW =
M2

p

2

(
V ′

V

)2

, ηFRW = M2
p

(
V ′′

V

)
(1.137)

are slow roll parameters in the absence of brane corrections. The influence of
the brane term becomes important when V/λb � 1 and in this case we get

ε ' 4εFRW(V/λb)
−1, η ' 2ηFRW(V/λb)

−1. (1.138)

Clearly slow-roll (ε, η � 1) is easier to achieve when V/λb � 1 and on this
basis one can expect inflation to occur even for relatively steep potentials,
such the exponential and the inverse power-law. The model of quintessential
inflation [27] based upon reheating via gravitational particle production is
faced with difficulties associated with excessive production of gravity waves.



1 Models of Dark Energy 33

Indeed the reheating mechanism based upon this process is extremely inef-
ficient. The energy density of so produced radiation sis typically one part
in 1016 to the scalar-field energy density at the end of inflation. As a result,
these models have prolonged kinetic regime during which the amplitude of pri-
mordial gravity waves enhances and violates the nucleosynthesis constraint.
Hence, it is necessary to look for alternative mechanisms more efficient than
the gravitational particle production to address the problem. However this
problem may be alleviated in instant preheating scenario [28] in the pres-
ence of an interaction g2φ2χ2 between inflaton φ and another field χ. This
mechanism is quite efficient and robust, and is well suited to non-oscillating
models. It describes a new method of realizing quintessential inflation on the
brane in which inflation is followed by ‘instant preheating’. The larger reheat-
ing temperature in this model results in a smaller amplitude of relic gravity
waves which is consistent with the nucleosynthesis bounds[27]. Fig.1.6 shows
the post inflationary evolution of scalar field energy density for the potential
given by

V (φ) = V0 [cosh(κλφ) − 1]
n

. (1.139)

This potential has following asymptotic forms:

V (φ) '
{

Ṽ0e
−nκλφ (|λφ| � 1, φ < 0) ,

Ṽ0(κλφ)2n (|λφ| � 1) ,
(1.140)

where Ṽ0 = V0/2
n. The existence of scaling solution for exponential potential

(V ∼ exp(κλφ)) tells us that λ2 > 3γ where as nucleosynthesis constraint
makes the potential further steeper as Ωφ = 3γ/λ2 < 0.2 → λ > 5. Po-
tential (1.140) is suitable for unification of inflation and quintessence. In this
case, for a given number of e-foldings, the COBE normalization allows to
estimate the brane tension λb and the field potential at the end of inflation.
Tuning the model parameters (λ − slope of the potential and V0), we can

account for the current acceleration with Ω
(0)
φ ' 0.7 and Ω

(0)
m ' 0.3[27]. How-

ever, the recent measurement of CMB anisotropies by WMAP places fairly
strong constraints on inflationary models. The ratio of tensor perturbations
to scalar perturbations turns out to be large in case of steep exponential
potential pushing the model outside the 2σ observational bound [30]. How-
ever, the model can be rescued in case a Gauss-Bonnet term is present in
five dimensional bulk [31, 32]. In order to see how it comes about, let us
consider Einstein-Gauss-Bonnet action for five dimensional bulk containing
a 4D brane

S =
1

2κ2
5

∫
d5x

√−g
{
R − 2Λ5 + αGB[R2 − 4RABRAB

+ RABCDRABCD]
}

+

∫
d4x

√
−h(Lm − λb) , (1.141)
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Fig. 1.6. The post-inflationary evolution of the scalar field energy density (solid
line), radiation (dashed line) and cold dark matter (dotted line) is shown as a func-
tion of the scale factor for the quintessential inflation model described by (1.140)

with V
1/4
0 ' 10−30Mp, λ = 50 and n = 0.1. After brane effects have ended, the

field energy density ρφ enters the kinetic regime and soon drops below the radiation
density. After a brief interval during which < wφ >' −1, the scalar field begins to
track first radiation and then matter. At very late times (present epoch) the scalar
field plays the role of quintessence and makes the universe accelerate. The evolution
of the energy density is shown from the end of inflation until the present epoch.
From Ref.[32].

R refers to the Ricci scalars in the bulk metric gAB and hAB is the induced
metric on the brane; αGB has dimensions of (length)2 and is the Gauss-Bonnet
coupling, while λb is the brane tension and Λ5 (< 0) is the bulk cosmological
constant. The constant κ5 contains the M5, the 5D fundamental energy scale
(κ2

5 = M−3
5 ).

The analysis of modified Friedmann [33] equation which follows from the
above action shows that there is a characteristic GB energy scale MGB[33]
such that,

ρ � M4
GB ⇒ H2 ≈

[
κ2

5

16αGB
ρ

]2/3

, (1.142)

M4
GB � ρ � λb ⇒ H2 ≈ κ2

6λb
ρ2 , (1.143)

ρ � λb ⇒ H2 ≈ κ2

3
ρ . (1.144)
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It should be noted that Hubble law acquires an unusual form for energies
higher than the GB scale. Interestingly, for an exponential potential, the
modified Eq.(1.142) leads to exactly scale invariant spectrum for primordial
density perturbations. Inflation continues below GB scale and terminates in
the RS regime leading to the spectral index very close to one. However, as
shown in Refs.[33, 31], the tensor to scalar ratio of perturbations(R) also
increases towards the high energy GB regime. It is known that the value of R
is larger in case of RS brane world as compared to the standard GR. While
moving from the RS regime characterized by H2 ∝ ρ2 to GB regime described
by H2 ∝ ρ2/3, we pass through an intermediate region which mimics GR like
behavior. It is not surprising that the ratio R has minimum at an intermediate
energy scale between RS and GB, see Fig.1.7. We conclude that a successful
scenario of quintessential inflation on the Gauss-Bonnet braneworld can be
constructed which agrees with CMB+LSS observations.

1.6 Conclusions

In this talk we have reviewed the general features of scalar field dynamics.
Our discussion has been mainly pedagogical in nature. we tried to present
the basic features of standard scalar field, phantoms and rolling tachyon.
Introducing the basic definitions and concepts, we have shown as how to find
the critical pints and investigate stability around them. This is a standard
technique needed for building the scalar field models desired for a viable
cosmic evolution. The two often used mechanisms for the exit from scaling
regime are also described in detail. In case of phantoms and rolling tachyon,
we have shown that there exits no scaling solutions which would mimic the
realistic background fluid (radiation/matter). Thus, in these case, there will
be dependency on the initial conditions of the field leading to fine tuning
problems. These models should therefore be judged on the basis of generic
features which might arise in them. The rolling tachyon is inspired by string
theory whereas as phantoms might be supported by observations!.

After developing the basic techniques of scalar field dynamics, we worked
out the example of quintessential inflation. we have shown in detail how
to implement the techniques for building a unified model of inflation and
quintessence with a single scalar field.

In this talk we have not touched upon the observational status of dark
energy models. We have also not discussed the alternatives to dark energy.
The interested reader is refereed to other talks on these topics in the same
proceedings. The supernovae observations are not yet sufficient to decide the
metamorphosis of dark energy. There have been claims and anti-claims for
dynamically evolving dark energy using supernovae, CMB and large scale
studies. Given the present observational status of cosmology, it would be
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Fig. 1.7. Plot of R (R ≡ 16A2
T /A2

S − according to the normalization used here[31])
versus the spectral index nS in case of the exponential potential for the number of
inflationary e-foldings N = 50, 60, 70 (from top to bottom) along with the 1σ and
2σ observational contours. These curves exhibit a minimum in the intermediate
region between GB (extreme right) and the RS (extreme left) regimes. The upper
limit on nS is dictated by the quantum gravity limit where as the lower bound
is fixed by the requirement of ending inflation in the RS regime[31]. For a larger
value of the number of e-folds N , more points are seen to be within the 2σ bound.
Clearly, steep inflation in the deep GB regime is not favored due to the large value
of R in spite the spectral index being very close to 1 there. From Ref.[32]

fair to say that the nature of dark energy remains to be a mystery of the
millennium. It could be any thing or it could be nothing!
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