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We briefly review the problems and prospects of the standard lore of dark energy. We
have shown that scalar fields, in principle, cannot address the cosmological constant
problem. Indeed, a fundamental scalar field is faced with a similar problem dubbed nat-
uralness. In order to keep the discussion pedagogical, aimed at a wider audience, we have
avoided technical complications in several places and resorted to heuristic arguments
based on physical perceptions. We presented underlying ideas of modified theories based
upon chameleon mechanism and Vainshtein screening. We have given a lucid illustration

of recently investigated ghost-free nonlinear massive gravity. Again, we have sacrificed
rigor and confined to the basic ideas that led to the formulation of the theory. The review
ends with a brief discussion on the difficulties of the theory applied to cosmology.
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1. Introduction

The standard model a la hot big bang has several remarkable successes to its credit
which include the predictions of expansion of universe,1 existence of microwave
background radiation2 and synthesis of light elements in the early universe.3 There
is a definite mechanism for structure formation in the standard model: tiny pertur-
bations of primordial nature may grow via gravitational instability into the struc-
ture we see today in the universe. These inhomogeneities were observed by COBE
in 1992.4 The hot big bang model requires the tiny perturbations for observational
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consistency and structure formation but nevertheless lacks a generic mechanism for
their generation. The latter is seen as one of the fundamental difficulties associated
with the standard model. The other shortcomings include flatness problem, horizon
problem and few more which belong to the list of logical inconsistencies of the
standard model whereas the problem of primordial perturbations is directly related
to observation. The said difficulties are beautifully addressed by the inflationary
paradigm. Interestingly, cosmological inflation was invented to tackle the logical
inconsistencies of hot big bang. As for density perturbations, it turned out later that
they could be generated quantum mechanically during inflation and then amplified
to the required level which certainly came as a big bonus for inflation. It, therefore,
became clear around 1982 that standard model needs to be complimented by an
early phase of accelerated expansion — the inflation.5–8

There is one more inconsistency of observational nature the standard model of
universe is plagued with — the age of universe in the model falls shorter than the
age of some well-known objects in the universe.9–11 The age crisis is related to the
late-time expansion as universe spent most of its time in the matter dominated
era for the simple reason that the expansion rate changed fast in the radiation
dominated phase. At early epochs, universe expands fast and particles move away
from each other with enormous velocities; the role of gravity is to decelerate this
motion. The higher the matter density present in the universe, the less time the
universe would spend to reach a given expansion rate, in particular, the present
Hubble rate, thereby leading to less age of universe. But whatever percentage of
matter we have in the universe today is an objective reality and we can do nothing
with it. The only known way out in the standard model is then to introduce a
repulsive effect to encounter the influence of normal matter which could then allow
us to improve upon the age of universe. Thus, we again need an accelerated phase of
expansion at late times to address the age crisis.9 It is remarkable that the late-time
cosmic acceleration was directly observed in 1998 in supernovae Ia observations12

and was confirmed by indirect observations thereafter.13–15

It is interesting that accelerated expansion plays an important role in the
dynamical history of our universe: the hot big bang model is sandwiched between
two phases of fast expansion — inflation5–8 and late-time cosmic acceleration16–26

needed to solve the generic inconsistencies of the standard model of universe. Late-
time cosmic acceleration is an observed phenomenon at present12 whereas similar
confirmation for inflation is still awaited.

In cosmology, observations supersede theoretical model building at present.
What causes late-time cosmic acceleration is the puzzle of the millennium. There
are many ways of obtaining late-time acceleration,16–26 but observations at present
are not yet in position to distinguish between them. Broadly, the models aiming
to address the problem come in two categories — the standard lore based upon
Einstein theory of general relativity (GR) with a supplement of energy–momentum
tensor by an exotic component dubbed dark energy19 and scenarios based upon
large scale modification of gravity.24
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Which of the two classes of models has more aesthetics is a matter of taste. Let
us first briefly discuss the dark energy scenario. The simplest model of dark energy
is based upon cosmological constant Λ which is an integral part of Einstein’s gravity.
All the observations at present are consistent with the model based upon cosmologi-
cal constant — ΛCDM. However, there are difficult theoretical problems associated
with Λ. With a hope to alleviate these problems, one tacitly switches off Λ without
justification and introduces scalar fields with generic cosmological dynamics which
would mimic cosmological constant at present. Unfortunately, scalar field models
are faced with problems similar to cosmological constant. As for the standard lore,
to be fair, cosmological constant performs satisfactorily on observational grounds
and unlike scalar fields does not require ad hoc assumption for its introduction.

What goes in favor of modified theories of gravity? Well, Einstein theory of grav-
ity is directly confronted with observations at the level of solar system; it describes
local physics with great accuracy and is extrapolated with great confidence to large
scales where it has never been verified directly. We know that gravity is modified
at small distances via quantum corrections, it might be that it also suffers modifi-
cation at large scales. And it is quite natural and intriguing to imagine that these
modifications give rise to late-time cosmic acceleration. What kind of modifications
to gravity can be expected at low energies or at large scales? Weinberg theorem
tells us that Einstein gravity is the unique low energy field theory of (massless)
spin-2 particles obeying Lorentz invariance. It is therefore not surprising that most
of the modified theories of gravity are represented by Einstein gravity plus extra
degrees of freedom. For instance, f(R) (Refs. 27–29) contains a scalar degree of
freedom with a canonical scalar field uniquely constructed from Ricci scalar and
the derivative of f(R) with respect to R. A variety of modified schemes of gravity
can be represented by scalar–tensor theories. In this setup, the extra degrees of free-
dom normally mixed with the curvature; action can be diagonalized by performing
a conformal transformation to Einstein frame where they get directly coupled to
matter. All the problems of modified theories stem from the following requirement.
The extra degrees of freedom should give rise to late-time cosmic acceleration at
large scales and become invisible locally where Einstein gravity is in excellent agree-
ment with observations. Local gravity constraints pose real challenge to large scale
modification of gravity; spatial mechanisms are required to hide these degrees of
freedom. Broadly, there are two ways of suppressing them locally. (1) Chameleon
screening30–32: this mechanism is suitable to massive degrees of freedom such that
the masses become very heavy in high density regime allowing one to escape their
detection locally. (2) Vainshtein screening,33–35 suitable to massless degrees of free-
dom, operates via kinetic suppression such that around a massive body, in a large
radius known as Vainshtein radius, thanks to nonlinear derivative interactions in
the Lagrangian, the extra degrees of freedom get decoupled from matter switching
off any modification to gravity locally.

In the case of massive gravity,36,37 we end up adding three extra degrees of
freedom one of which, namely, the longitudinal degree of freedom (φ) is coupled
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to source with the same strength at par with the zero mode and leads to vDVZ
discontinuity38,39 in linear theory. In dRGT,36,37 in decoupling limit, valid limit
to tackle the local gravity constraints, the longitudinal mode gets screened by the
nonlinear derivative terms of the field φ dubbed galileon.40,41

Models of large scale modifications based upon chameleon mechanism are faced
with tough challenges: These models are generally unstable under quantum cor-
rections as the mass of the field should be large in high density regime in order
to pass the local physics constraints.42,43 In an attempt to comply with the local
physics, one also kills the scope of these theories for late-time cosmic acceleration.44

On the other hand, Vainshtein mechanism is a superior field theoretic method of
hiding extra degrees of freedom and is at the heart of recently formulated ghost-free
model of massive gravity — dRGT. Apart from the superluminality problem45 of
dRGT inherent to galileons,41,46,47 it is quite discouraging that there is no scope
of Freidmann–Robertson–Walker (FRW) cosmology in this theory.48 It is really
a challenging task to build a consistent theory of massive gravity with a healthy
cosmology.

In this paper, we shall briefly review the problems associated with dark energy
and focus on problems and prospects of modified theories of gravity and their rele-
vance to late-time cosmic acceleration. The review is neither technical nor popular,
it is rather a first introduction to the subject and aims at a wider audience.

In this review, we would stick to metric signature, (−,+,+,+) and denote the
reduced Planck mass as Mp = (8πG)−1/2. We hereby give an unsolicited advice
to the reader on the followup of the review. The section on cosmological constant
should be complemented by Ref. 49 for a thorough understanding of the problem.
For a detailed study of scalar field dynamics, we refer the reader to the review.19

Readers interested in learning more on modified theories of gravity, supported by
chameleon mechanism, are recommended to work through the reviews.29,32,50 In our
description of massive gravity, we resorted to heuristic arguments in several places
in order to avoid the technical complications. After reading the relevant section, we
refer the reader to the exhaustive reviews51,52 on the related theme.

2. FRW Cosmology in Brief

The FRW model is based on the assumption of homogeneity and isotropy a la cos-
mological principlea which is approximately true at large scales. The small deviation

aThe standard or restricted cosmological principle deals with homogeneity and isotropy of three
space. The success of hot big bang based upon this doctrine witnesses that not always nature
makes choice for the most beautiful. On the other hand, the perfect cosmological principle, in
adherence to the fundamental principle of relativity, treats space and time on the same footings.
It imbibes aesthetics, beauty and is certainly on a solid philosophical ground than the restricted
cosmological principle. Interestingly, the 19th century materialist philosophy — the dialectical
materialism view on the genesis of universe was based upon a similar principle which can be found
in the classic work by Frederick Engels, “Dialectics of nature.” According to this ideology, universe
is infinite, had no beginning, no end and always appears same, thereby leaving no place for God
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from homogeneity in the early universe seems to have played very important role
in the dynamical history of our universe. The tiny density fluctuations are believed
to have grown via gravitational instability into the structure we see today in the
universe.

Homogeneity and isotropy force the metric of spacetime to assume the form,

ds2 = −dt2 + a2(t)
(

dr2

1 −Kr2
+ r2(dθ2 + sin2 θdφ2)

)
; K = 0,±1, (1)

where a(t) is scale factor. Equation (1) is purely a kinematic statement which is an
expression of maximal spatial symmetry of universe thanks to which full information
of cosmological dynamics is imbibed in a single function — a(t). Einstein equations
allow us to determine the scale factor provided the matter contents of universe are
specified. Constant K occurring in the metric (1) describes the geometry of spatial
section of spacetime. Its value is also determined once the matter distribution in
the universe is known. In general, Einstein equations

Rµ
ν − 1

2
δµ
νR = 8πGT µ

ν (2)

are complicated but thanks to the maximal symmetry, expressed by (1), get sim-
plified and give rise to the following evolution equations:

H2 ≡ ȧ2

a2
=

8πGρ
3

− K

a2
, (3)

ä

a
= −4πG

3
(ρ+ 3p), (4)

where ρ and p are density and pressure of matter filling the universe which satisfy
the continuity equation,

ρ̇+ 3H(ρ+ p) = 0. (5)

For cold dark matter, pm = 0 (equation-of-state parameter wm ≡ pm/ρm = 0)
and it follows from (5) that ρm = ρ0

m(a0/a)3, where the subscript “0” designate
the respective quantities at the present epoch. In the case of spatially flat universe,
K = 0, the scale factor a0 can be normalized to a priori given value, say at unity.
In other cases, its value depends on the matter content in the universe.

The nature of expansion expressed by Eqs. (3) and (4) depends upon the nature
of the matter content of universe. It should be emphasized that in general theory
of relativity, pressure contributes to energy density and the latter is a purely rela-
tivistic effect. The contribution of pressure in Eq. (4) can qualitatively modify the

in it. The Hoyle–Narlikar steady state theory is based upon the perfect cosmological principle and
it would have been extremely pleasing had the steady state theory succeeded, but we cannot force
nature to make a particular choice, even the most beautiful one!
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expansion dynamics. Indeed, Eq. (4) tells us that

ä > 0, p < −ρ
3
,

ä < 0, p > −ρ
3
.

Accelerated expansion, thus, is fueled by an exotic form of matter of large neg-
ative pressure — dark energy16,18–24 which turns gravity into a repulsive force. The
simplest example of a perfect fluid of negative pressure is provided by cosmologi-
cal constant associated with ρΛ = const. In this case, the continuity equation (5)
yields the relation pΛ = −ρΛ. Keeping in mind the late-time cosmic evolution, let
us write down the evolution equations in matter dominated era in the presence of
cosmological constant,

H2 ≡ ȧ2

a2
=

8πGρm

3
− K

a2
+

Λ
3
, (6)

ä

a
= −4πG

3
ρm +

Λ
3
. (7)

It is instructive to cast these equations in the form to mimic the motion of a
point particle in one dimension. Equation (7) can be put in the following form:

ä(t) = −∂V (a)
∂a

; V (a) = −
(

4πGρba
2

3
+

Λa2

6

)
, (8)

whereas the Friedmann equation acquires the form of total energy of the mechanical
particle

E =
ȧ2

2
+ V (a), E = −K

2
. (9)

The potential V (a) is concave down and has a maximum where the kinetic energy
is minimum (see Fig. 1), (

ȧ2

2

)∣∣∣∣
min

=
1
2
(C2/3Λ1/3 −K), (10)

where C = 4πGρ0a3
0. If we imagine that motion in Fig. 1 commences on the left

of the hump, the kinetic energy is always sufficient to overcome the barrier for
K = 0 and K = −1 whereas in the case of K = 1, we get a bound on the value
of Λ ≥ Λc = 4πρ0a3

0 to achieve the same. Observations have repeatedly conformed
the spatially flat nature of geometry (K = 0)12–14 which is consistent with the
prediction of inflationary scenario and we shall adhere to the same in the following
discussion. In this case, starting from position (A), see Fig. 1, one can always reach
(C) and before one reaches the hump, motion decelerates followed by acceleration
thereafter. Observations have shown that this transition takes place at late times.
In order to appreciate it, let us write (6) in the form,

H2 = H2
0

[
Ωm

(a0

a

)3

+ ΩΛ

]
; Ωm =

ρ0
m

ρcr
, ΩΛ =

ρΛ

ρcr
, ρcr =

3H2
0

8πG
. (11)
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Fig. 1. Figure displays the potential V (a) versus the scale factor a. The initial positions (A)
and (B) correspond to motion of system beginning from a = 0 and a = ∞. For K < 0 and
Λ < Λc, we have oscillating and bouncing solutions depending whether the motion commences
from configuration (A) with a = 0 or from configuration (B) with a = ∞. Einstein static solution
(ä = 0, ȧ = 0) corresponds to the maximum of the potential. The case of Λ > Λc is similar to
K = 0,−1 such that the kinetic energy is always sufficient to overcome the barrier.

It is then straightforward to estimate the numerical value of a0/a for which the
kinetic energy

ȧ2 = H2
0

[
Ωm

(a0

a

)3

+ ΩΛ

]
a2 (12)

is minimum and that happens when

(a0

a

)∣∣∣
min

≡ 1 + ztr =
(

2ΩΛ

Ωm

)1/3

, (13)

where we have introduced redshift z which quantifies the effect of expansion. Using
the observed values of dimensionless density parameters Ωm � 0.3 and ΩΛ � 0.7, we
find that ztr � 0.67 which tells us that transition from deceleration to acceleration,
indeed, took place recently.

Let us note that cosmological constant is not the only example of negative
pressure fluid, a host of scalar field systems can also mimic a negative pressure
fluid. An important comment about negative pressure systems is in order. The
introduction of Λ does not require an ad hoc assumption, the latter is always present
in Einstein equations by virtue of Bianchi identities. In fact in four dimensions,
the only consistent modification (without invoking the extra degrees of freedom)
that the Einstein equations allow in the classical regime is given by Tµν → Tµν −
Λgµν . Actually, this is the other way around that one should provide justification if
one wishes to drop the cosmological constant from Einstein equations; there exists
no symmetry at low energies to justify the latter. As for the scalar fields, their
introduction is quite ad hoc and on top of everything, one switches off Λ for no
known reason. Scalar fields, however, may be of interest if they are inspired by a
fundamental theory of high energy physics.
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2.1. Age crisis in hot big bang and the need for a repulsive effect

At early epochs, radiation dominates, its energy density is large, as a result, the
expansion rate is also large. Consequently, it does not take much time to reach a
given expansion rate in the early universe. For instance, universe was around 105

years old at the radiation matter equality which is negligible compared to the age of
universe. It is therefore clear that most of the contributions to the age of universe
comes from matter dominated era at late stages. In order to appreciate the role
of Λ, let us switch it off in the Friedmann equation. Then for matter dominated
universe (K = 0), the Friedmann equation (3) readily integrates to

a(t) ∝ t2/3 → H =
2
3t

(14)

and specializing to the present epoch, we have

t0 =
2
3

1
H0

. (15)

Recent observations reveal that

H−1
0 � 1.4 × 109 years → t0 � 9.4 × 109 years (16)

which falls much shorter than the age of some well-known objects (around 14 billion
years) in the universe.9–11 Actually, the factor of 2/3 in (15) spoils the estimate.
Let us argue on physical grounds as to how we should address the problem. In
the presence of normal matter, gravity is attractive and it decelerates the motion.
If gravity could be ignored, then using the Hubble law v = Hr(v = const.), we
could have t0 = 1/H0 which is what is required. However, we cannot ignore gravity,
there is around 30% of matter present in the universe which causes deceleration of
the expansion and reduces the age of universe. The only way out to decrease the
influence of the matter is to introduce a repulsive effect necessary to encounter the
gravitational attraction of normal matter. Let us stress that this is the only known
possibility to improve upon the age of universe in the standard model of universe.
Indeed using the Friedmann equation, we can estimate the time universe has spent
starting from the big bang till today or the age of universe t0,

t0 =
1
H0

∫ ∞

0

dz

(1 + z)
√

Ωm(1 + z)3 + ΩΛ

, (17)

where we have used the change of variable dt = −dz/H(1 + z). The age of the
universe is then finally given by

t0H0 =
2
3

1

Ω1/2
Λ

ln

(
1 + Ω1/2

Λ

Ω1/2
m

)
. (18)

Expression (18) tells us that t0H0 � 1 for the observed values of density parameters,
ΩΛ � 0.7 and Ωm � 0.3. Thus, the late-time inconsistency of hot big bang cries for
cosmological constant.
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It is really interesting to note that there exists no such problem in Hoyle–Narlikar
steady state cosmology53,54 which thanks to the perfect cosmological principle has
no beginning and no end. Also, the steady state theory imbibes cosmic acceler-
ation and does not suffer from the logical inconsistencies the standard model is
plagued with. Unfortunately, the model faces problems related to thermalization of
the microwave background radiation. However, the generalized steady state theory
dubbed “Quasi-Steady State Cosmology” (QSSC) formulated by Hoyle, Burbidge
and Narlikar claims to explain the CMBR as well as derive its present temperature
which the big bang cannot do.55

2.2. Theoretical issues associated with cosmological constant

It is clear from the aforesaid that cosmological constant is essentially present in Ein-
stein equations as a free parameter which should be fixed by observations. Sakharov
pointed out in 1968 (Ref. 56) that quantum fluctuations would correct this bare
value. In flat spacetime, according to Sakharov, a field placed in vacuum would
have energy–momentum tensor,

〈0|Tµν |0〉 = −ρvηµν (19)

uniquely fixed by relativistic invariance. ρv dubbed vacuum energy density is con-
stant by virtue of conservation of energy–momentum tensor. Keeping in mind the
perfect fluid form of the energy–momentum tensor, we have pv = −ρv which is the
expression of relativistic invariance. The curved spacetime generalization is given
by

〈0|Tµν |0〉 = −ρvgµν (20)

which should be added to the bare value of cosmological constant present in Einstein
equations,

Rµν − 1
2
Rgµν + gµνΛb = Tm

µν + 〈0|Tµν |0〉. (21)

A free scalar field is an infinite collection of noninteracting harmonic oscillators
whose zero point energy is the vacuum energy of the scalar field,

ρv =
1
2

∫ ∞

0

4πk2dk

(2π)2
√
k2 +m2 (22)

and incorporating spin does not change the estimate. Expression (22) is formally
divergent and requires a cut-off. One normally cuts it off at Planck’s scale as an
expression of our ignorance and concludes that ρv ∼M4

p . Using then the Friedmann
equation expressed through dimensionless density parameters,

Ωeff
Λ + Ωm = 1 (23)

one finds ρeff
Λ � ρcr ∼ 10−120M4

p which is the source of a grave problem. And since

ρeff
Λ = ρb

Λ + ρv, (24)
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it follows that ρb
Λ should cancel ρv to a fantastic accuracy, typically, at the level of

one part in 10−120. The supernovae Ia observation in 1998 revealed that effective
vacuum energy is not only small, it is of the order of matter density today.

The cosmological constant problem is often formulated as follows:

• Old problem (before 1998): Why effective vacuum energy is so small today?57

• New problem (after 1998): Why we happen to live in special times when dark
energy density is of the order of matter density? a la coincidence problem.58

We should point out a flaw in the above arguments.49 We should bear in mind
that the cut-off used on 3-momentum violates Lorentz invariance and might lead
to wrong results. In what follows, we shall explicitly demonstrate it.

Lorentz invariance signifies a particular relation between vacuum energy ρv and
vacuum pressure pv, namely, ρv = −pv. Similar to the vacuum energy, the vacuum
pressure is formally divergent and also requires a cut-off. Introducing a cut-off M

in the divergent integrals and expressing ρv and pv, we have

ρv =
1

2(2π)3

∫ ∞

0

d3kω(k), (25)

pv =
1

6(2π)3

∫ ∞

0

d3k
k2

w(k)
; w(k) =

√
k2 +m2 (26)

which allows us to compute these quantities,

ρv =
1

4π2

∫ M

0

dkk2
√
k2 +m2

=
M4

16π2

[√
1 +

m2

M2

(
1 +

m2

2M2

)
− 1

2
m4

M4
ln

(
M

m
+
M

m

√
1 +

m2

M2

)]
, (27)

pv =
1
3

1
4π2

∫ M

0

dk
k4

√
k2 +m2

=
1
3
M4

16π2

[√
1 +

m2

M2

(
1 − 3M2

2M2

)
+

3m4

2M4
ln

(
M

m
+
M

m

√
1 +

m2

M2

)]
. (28)

In the expressions quoted above, m is the mass of the scalar field placed in vacuum.
Invoking spin contribution does not alter the estimates. Hence, ρv and pv given
by (27) and (28) are valid estimates for any field placed in vacuum. Second, as
mentioned before, for Lorentz invariance to hold we should have ρv = −pv which
is clearly violated by the first terms in (27) and (28). It should be noted that this
is the first term in these expressions which gives contribution proportional to M4.
As for the second terms with logarithmic dependence on the cut-off, they are in
accordance with Lorentz invariance.

It is therefore clear that we should employ a regularization scheme which
respects Lorentz invariance. For instance, dimensional regularization is suitable to
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the problem. Let us first transform the integral from four to d dimension,

ρv =
µ4−d

2(2π)(d−1)

∫ ∞

0

dkkd−2dd−2Ωω(k), (29)

where the scale µ is introduced to take care of the units in d-dimensional case and
Ω is the solid angle. This integral can be expressed through gamma function,

ρv =
µ4

2(4π)(d−1)/2

Γ
(
−d

2

)

Γ
(
−1

2

) (m
µ

)d

. (30)

Finally, we should return to four dimensions by letting d = 4 − ε and expanding
the result in ε to the leading order,

ρv = − m4

64π2

(
2
ε

+
3
2
− γ − ln

(
m2

4πµ2

))
+ · · · (31)

which diverges as ε → 0. We have successfully isolated the divergence without
violating Lorentz invariance. We then subtract out infinity to obtain the final result,

ρv � m4

64π2
ln
(
m2

µ2

)
. (32)

In order to estimate the vacuum energy, we should imagine all the fields placed
in vacuum and sum up their contributions. To be pragmatic, we use the following
data from standard model of particle physics to estimate ρv

mt � 171 GeV; mH � 125 GeV; mz,w � 90 GeV; . . . . (33)

Clearly, the stage is set by the heaviest scale in the problem, the mass of the top
quark. As for the scale µ, it is always estimated by the physical conditions. In
the problem under consideration, the energy scale, µ, is set by the critical energy
density and the energy density characterized by the wavelength of light received
from supernovae,

µ ∼ √H0Eγ , H0 ∼ 10−41 GeV; λ ∼ 500 nm, (34)

µ ∼ √H0Eγ → ρv � 108 GeV4, (35)

which shows that effective vacuum energy density is down by 64 orders of magnitude
compared to the one obtained using the Lorentz violating regularization. And this
considerably reduces the fine tuning at the level of standard model,

ρeff
Λ � 10−56M4

p . (36)

Thus, fine tuning is one part in 10−56, rather than one part in 10−120 as often
quoted, provided we believe that there is no physics beyond standard model. But
we know that there is at least one scale beyond, associated with gravity, namely,
the Planck scale which would take us back to original fine tuning problem if the
Planck scale is fundamental. However, if it is a derived scale similar to the one
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Fig. 2. Figure shows the time universe has spent beginning from particular value of redshift to
the present epoch. The black dot on the curve corresponds to time universe has spent from z = 1
to z = 0 which is more than half of the age of universe. It is clear from the figure that the curve
fast saturates as z increases and that most of the contributions to the age comes from the matter
dominated era (z = 4, 0).

in Randall–Sundrum scenario, the fine tuning could considerably reduce. We thus
conclude that the cosmological constant problem a la fine tuning could not be as
severe as it is posed; it is often overemphasized. Of course, the problem still remains
to be grave.

The coincidence problem or why dark energy density is of the order of matter
density today is yet more overemphasized. We know that universe went through a
crucial transition between z = 1 and z = 0. Let us ask how much time universe has
spent beginning from a given redshift z to the present epoch. Using Eq. (17), it is
straightforward to write down the expression for tz,

tz =
1
H0

∫ z

0

dz′

(1 + z′)
√

Ωm(1 + z′)3 + ΩΛ

, (37)

where the dimensionless density parameters are specialized to the present epoch as
before.

It is clear from Fig. 2 that most of the contributions to age comes from late
stage of evolution. Universe spent more than half of its age in the interval between
z = 1 and the present epoch, z = 0 and during this period, matter density and dark
energy density remained roughly within the same order of magnitude. Thus, they
have been within one order of magnitude for ages, thereby telling us that there is
hardly any coincidence problem.59

3. Quintessence and Its Difficulties

Slowly rolling scalar fields, broadly referred to as quintessence,60 were introduced
with a hope to alleviate the fine tuning problem. Scalar field models applied to
cosmological dynamics can be classified into two types — trackers58 and thaw-
ing61 models. Trackers are interesting for the reason that dynamics in this case is
independent of initial conditions whereas the thawing models involve dependency
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on initial conditions with the same level of fine tuning at par with cosmological
constant.

Let us briefly consider the cosmological dynamics of a scalar field which can
be treated as a perfect fluid with energy density ρφ and pressure pφ given by (see
Ref. 19 for details),

ρφ =
φ̇2

2
+ V (φ); pφ =

φ̇2

2
− V (φ); ωφ ≡ pφ

ρφ
. (38)

For slowly evolving field, ωφ � −1 whereas ωφ � 1 if field rolls fast which happens
for a steep potential. The equation of motion for the standard scalar field φ in FRW
cosmology is

φ̈+ 3Hφ̇+ V ′(φ) = 0, (39)

where the second term is due to Hubble damping. From (39), we infer that

ρφ = ρ0
φ exp

(
−
∫

3(1 + ωφ)
da

a

)
(40)

which tells us that ρφ ∼ 1/a6 in case the field is rolling along a steep potential.
Let us consider an exponential potential which has served as a laboratory for the
understanding of cosmological dynamics,62,63

V (φ) = V0e
−λφ/Mp . (41)

The parameter ε = M2
p (V ′/V )2/2 then sets a condition for slow roll, namely,

λ <
√

2. The slow roll parameters do not play the same role here as they do in the
case of inflation due to the presence of matter but still can guide us for the broad
picture. A suitable choice of λ can give rise to viable late-time cosmic evolution.
The de Sitter solution is an attractor of the system. There is one more remarkable
attractor in the system that exists in the presence of background (matter/radiation)
dubbed scaling solution which exists for a steep potential with λ ≥ √

3. Let us
consider the case when field energy density is initially larger than the background
energy density, ρb = ρr/ρm, see Fig. 3. Since the potential is steep, ρφ redshifts
faster than ρb and the field overshoots the background such that ρφ 
 ρb. In
that case, the Hubble damping in the field evolution equation is enormous and
consequently, the field freezes on its potential such that ρφ = const. Meanwhile
the background energy density redshifts with the expansion and the field waits
till the moment its energy density becomes comparable to that of the background,
thereafter the evolution can proceed in two ways depending upon the nature of
the potential: (1) In the case of (steep) exponential potential, field would track
the background; in matter dominated era, field would mimic matter (ωφ = ωm)
forever. This is a very useful attractor dubbed scaling solution though not suitable
to late-time acceleration. In this case, we shall need a feature in the potential that
would give rise to the exit from scaling solution at late times, see Fig. 3. (2) In this
case, field begins to evolve and overtakes the background without following it which
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Fig. 3. Figure shows evolution of ρφ and background energy density versus the scale factor on
the logarithmic scale. As the field emerges from locking regime, it tracks the background. At late
times, it begins to approach ρb and finally overtakes to become dominant giving rise to late-time
acceleration. Once the present epoch is set by suitably choosing the model parameters, evolution
is independent of initial conditions.

happens if the field rolls slow at late times. This happens in the case of a potential
which is steep but not exponential at early epochs and shallow at late times. For
such potentials, evolution crucially depends upon the initial conditions. In this case,
though we can have suitable late-time evolution but the model is faced with the
same fine tuning problem as the one based upon cosmological constant; models
with shallow potential throughout are faced with the same problem. Models of this
class are termed as thawing models, see Fig. 4. Let us note that the requirement to
obtain a tracker solution is very specific and only a small number of field potentials
in the case of a standard scalar field can give rise to tracker solutions. As for

Fig. 4. The figure shows the evolution of field energy density along with the background matter
density ρb on log scale. Initially, field rolls along steep part of the potential, redshifts faster than
ρb, overshoots it and freezes due to large Hubble damping. In this case, after the exit from locking
regime, field begins to roll slowly and overtakes the background and can account for late-time
cosmic acceleration. In this case changing initial conditions would disturb present day physics
which can be restored by resetting the model parameters. In this case, evolution depends upon
initial conditions. The level of fine tuning is at par with cosmological constant.
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the tachyon64 or phantom65,66,b fields, there exists no realistic tracker (that could
track the standard matter); irrespective of their potential, they belong to the class
of thawing models.

What is a desirable quintessence field for thermal history and late-time cosmic
evolution? Actually, we should look for a model with steep exponential potential
throughout most of the history of universe and a shallow one at late times. In
that case, the field would assume the scaling behavior after the exit from locking
regime and only at late times it would leave it to become dominant and give rise
to late-time cosmic evolution a la tracker solution, see Fig. 3.58 In this case, evo-
lution is independent of initial conditions and the fine tuning associated with Λ
may be alleviated. It is possible to realize tracker solutions in several ways. How-
ever, they are obtained most naturally in models with inverse power law potentials
(V ∼ 1/φn) which approximate the exponential potential for large values of the
exponent n and for which the slope is variable — large at early epochs and small
at late times which is precisely the behavior we are looking for. It is little discour-
aging that tracker models are less favored observationally compared to thawing
models.

The slowly rolling scalar field models irrespective of their types are generally
faced with another grave problem which surfaces when we allow the scalar field
interaction with matter, gφψ̄ψ. In order to appreciate the problem, let us estimate
the mass of scalar field employing any of the slow roll conditions,

ε =
M2

p

2

(
V ′

V

)2


 1; η = M2
p

V ′′

V

 1 (42)

and since the mass of the field should be of the order ofH0 to be relevant to late-time
cosmic acceleration, we find by making use of the second slow roll parameter η,

m2 � V ′′ � V

M2
p

� H2
0M

2
p

M2
p

� (10−33 eV)2. (43)

An important remark related to late-time field dynamics is in order. In case m �
H0, the field would be rolling very fast at the present epoch and hence of no
relevance to late-time cosmology. On the other hand, if m 
 H0, the field would
not be distinguished from cosmological constant. Therefore, the quintessence mass
should be precisely of the order of H0.

The tiny mass of the field creates problem as one loop correction shifts the mass
of the field by a huge amount m2 → m2 + gM2 (M is cut-off) unless we tune the
coupling g appropriately. Since m2 ∼ H2

0 , the required fine tuning brings us back
to cosmological constant. Since there are no known symmetries at low energies to
control the radiative corrections, the purpose of introducing dynamical dark energy

bPhantom field is nothing but Hoyle–Narlikar creation field C needed in steady state theory to
reconcile with homogeneous density by creation of new matter in the voids caused by the expansion
of the universe, thereby allowing the universe to appear same all the times.
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this way stands defeated. Let us mention an attempt to construct a string inspired
axionic quintessence for which the radiative corrections might be under control.67

However, the scenario belongs to the class of thawing models and thereby faced
with the same level of fine tuning as cosmological constant.

Before we get to the next topic, we would like to comment on the stability of
fundamental scalar against radiative corrections. One might think that the large
correction to mass is the artifact of the regularization as dimensional scheme of
regularization always involves logarithmic dependence on the cut-off.c In order to
clarify the issue, let us accurately compute the one loop correction to mass of the
fundamental scalar,

(δm2)1 loop ∼
∫

d4k

k2 +m2
s

∼M2 +m2
s ln

M2

m2
s

, (44)

where ms is the mass of field circulating in the loop and M is the cut-off on four
momentum introduced to compute the divergent integral. It should be noticed that
unlike the calculation of vacuum energy, the cut-off used here preserves Lorentz
invariance. Second, one often quotes the first term of (44) as correction to mass
which is quadratic divergent (as we did above) when cut-off is removed. Let us
compute the same using dimensional regularization,

(δm2)1 loop ∼
∫

d4k

k2 +m2
s

∼ 1
ε

+m2
s ln

m2
s

µ2
. (45)

We notice that the first terms in both the expressions (44) and (45) are divergent
and need to be subtracted; the remaining logarithmic corrections are essentially
same whether we impose simple cut-off on four momenta in the divergent inte-
gral or we employ the dimensional regularization. We should emphasize that it is
the property of the fundamental scalar that the radiative correction to its mass is
proportional to the mass of the field it interacts with. The dominant contribution
comes from the heaviest mass scale in the theory to which the one loop correc-
tion is proportional to. In case there is such a mass scale in the theory, it would
destabilize the system as there is no symmetry to protect it at low energies. This
is a generic problem inherent to theories that include a fundamental scalar and it
has nothing to do with the regularization scheme we use. Indeed, the same does
not happen in electrodynamics where the one loop correction to mass of electron is
given by

(δm2
e)1 loop ∼ e2m2

e ln
M2

m2
e

(46)

which is remarkable in a sense that atomic physics can rely on the interaction of
electrons and photons and can safely ignore heavier fermions; their contribution
is suppressed by inverse powers of the corresponding heavier mass scales which is
radically different from what happens in theory with a fundamental scalar.

cM. Sami thanks Yi Wang for posing this question to him and he is indebted to R. Kaul for
clarifying the issue.
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3.1. Cosmological constant, scalar field and t’ Hooft criteria

of naturalness

In a healthy field theoretic setup, the higher mass scales are expected to decou-
ple from low energy physics. According to t’Hooft, a parameter in the field the-
ory is termed natural if by switching it off in Lagrangian at the classical level, it
enhances symmetry of theory which is also respected at the quantum level. Let us
immediately note that cosmological constant is not a natural parameter of Ein-
stein theory. Indeed, in absence of matter, if we ignore Λb, Einstein equations (21)
admit Minkowski spacetime as solution. In this case, the underlying symmetry
group, namely, the Poincare group has 10 generators similar to the case of de Sitter
spacetime that one obtains as solution after invoking cosmological constant in Ein-
stein equations. We therefore conclude that cosmological constant is not a natural
parameter of Einstein theory. It is also clear from the above discussion that any
field theory that contains a fundamental scalar suffers from the problem of nat-
uralness, see Ref. 25 for details. In these theories a protection mechanism should
be in place. The recent discovery of Higgs boson of mass around 125GeV cries for
supersymmetry essential for the consistency of the framework. Clearly, both the
cosmological constant and scalar field are faced with problem of similar nature.

Let us also emphasize that in field theory formulated in flat spacetime, vacuum
energy can safely be ignored by choosing normal ordering. It is legitimate as there
is no known laboratory experiment to measure the absolute value of energy; we
normally measure the difference such that the vacuum energy gets canceled in the
process. Can’t we then play the following trick to address the cosmological con-
stant problem? Indeed, the FRW metric is conformally equivalent to Minkowski
spacetime. By a suitable conformal transformation on Einstein–Hilbert action with
cosmological constant, we can transform to flat spacetime. However, in this case,
we are left with scalar field nonminimally coupled to matter. Taking into account
the fact that particle masses in the Einstein frame become field-dependent, one can
demonstrate that the scalar field in flat spacetime imbibes full information of FRW
dynamics. Have we then done away with cosmological constant problem? Unfortu-
nately, scalar field as we pointed out is plagued with the problem of naturalness,
thereby one problem translates into another equivalent one.

4. Large Scale Modification of Gravity and Its Relevance to Late-
Time Cosmic Acceleration

As mentioned before, the modified theories of gravity at large scales are essentially
represented by Einstein Gravity (GR) along with the extra degrees of freedom. For
instance, in f(R) theories,27–29 we have one scalar degree of freedom ϕ dubbed
scalaron which is mixed with the curvature in the Jordan frame. We can diago-
nalize the Lagrangian by performing a conformal transformation on f(R) action
reducing the theory in Einstein frame to GR plus a scalar field with a potential
uniquely determined through R and the first derivative of f(R) with respect to
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R. Consistency demands that f ′ > 0 (absence of ghost) and f ′′ > 0 (absence of
tachyonic mode or Dolgov–Kawasaki instability). In Einstein frame, degrees of free-
dom become diagonalized but ϕ gets directly coupled to matter and the coupling
is typically of the order of one. We emphasize that both the frames are not only
mathematically equivalent but also describe same physics: the relationship between
physical observables is same in both the frames. The extra degree of freedom ϕ

should give rise to late-time cosmic acceleration, thereby telling us that its mass
mϕ ∼ H2

0 . However, such a light field directly coupled to matter would grossly
violate the local physics where GR is in excellent agreement with observations.
For instance, solar physics would be safe if mϕ > 10−27. It is an irony that large
scale modification interferes with local physics which is related to the fact that GR
describes local physics to a very high accuracy. Thus, if f(R) to be relevant to
late-time cosmic acceleration, the scalaron should appear light at large scales and
heavy locally in high density regime a la a chameleon field.30,31 In what follows,
we shall present basic features of large scale modification of gravity.

4.1. Modified theories of gravity

An important class of modified theories can be described by generalized scalar–
tensor theories. Let us for simplicity consider the following action in Einstein frame:

S =
∫ √−gd4x

[
M2

p

2
R− 1

2
(∂µφ)2 − V (φ)

]
−
∫ √−gd4xLm(ψ,A2(φ)gµν), (47)

where ψ are the matter fields and A(φ) is the conformal coupling which relates
Einstein metric gµν with the Jordan metric as

g̃µν ≡ A2gµν (48)

and appears in the matter Lagrangian. We can generalize the scalar field Lagrangian
in (47) by including nonlinear higher derivative terms dubbed galileons39–41,68–75 or
generalized galileons a la Hordenski field.76,77 We shall provide outline of galileon
field dynamics in the discussion to follow. Going ahead, we wish to point out that
these fields are central to Vainshtein screening which in turn are at the heart of mas-
sive gravity36,37,78–84 (for review, see Ref. 51). In the discussion to follow, we shall
first consider scalar field with potential suitable to implement chameleon mechanism
and then turn to massless field and its screening using kinetic suppression.

In the case of a massive field, it is instructive to write down the equation
of motion for the field in the presence of the conformal coupling by varying the
action (47),

�φ = −A′(φ)T +
dV

dφ
= − α

Mp
T +

dV

dφ
; α ≡Mp

d lnA(φ)
dφ

, (49)

where α is coupling constant and for simplicity, we assume that A(φ) � 1+αφ/Mp

(φ/Mp 
 1). Let us note that f(R) theories correspond to α = 1/
√

6. It is important
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to understand the physical meaning of φ which becomes clear by considering the
Newtonian limit in the presence of the conformal coupling. In this case, the geodesics
equation is given by

d2xµ

dτ
+ Γµ

αβ

dxα

dτ

dxβ

dτ
+

α

Mp
∂µφ � 0, (50)

where the last term in the above equation is sourced by the conformal coupling. The
second term in (50) in Newtonian limit yields the gradient of Newtonian potential
with minus sign supplemented by the third term due to conformal coupling,

Φtot = ΦN +
α

Mp
φ. (51)

We should once again remind ourselves that α is of the order of one in which case
the contribution of the additional term may become comparable to ΦN . In such
a scenario, the local physics would be disturbed as the latter is described by GR
with a fantastic accuracy. We, therefore, need to locally screen out the effects of the
extra force (fifth force) to a great accuracy which is implemented by the chameleon
mechanism for a massive field. Before we move ahead it might be instructive to
transform the action (47) back to Jordan frame,∫

d4x
√−g

[
M2

p

2
ΦR̃ − M2

p

2
ω(Φ)

Φ
g̃αβ∂αΦ∂βΦ − Φ2V (Φ)

]

+
∫
d4x
√

−g̃Lm(ψ, g̃µν), (52)

where Φ = A−2(φ) and ω(φ) is given by

ω(φ) =
1
2


 1

2M2
p

(
A′

A

)2 − 3

→ 1

α2
= 2ω(φ) + 6. (53)

Here “prime” ( ′ ) denotes derivative with respect to the field. Let us comment on
relation of Brans–Dicke parameter and the coupling constant α. It follows from (53)
that α = 1/

√
6 for ω = 0 which corresponds to f(R). The coupling constant α as we

repeatedly mentioned is typically of the order of one whereas local gravity constrains
demand that ω � 4×104 correspondingly α is vanishingly small. The latter describes
the trivial regime of scalar–tensor theories and one is dealing in that case with a
coupled quintessence with negligibly small coupling. If accelerated expansion takes
place in this case, it is definitely due to flatness of the potential. In such cases
one does not need chameleon mechanism and corresponding scalar theories are of
little interest. Let us also note that at the onset it appears from (52) that Geff =
A(φ)G. However, what one measures in Cavendish experiment is different and can
be inferred, for instance, from weak field limit,85

Geff = GA(φ)(1 + 2α2), (54)

where the expression in parenthesis is due to the exchange of the scalaron.
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It is clear from the aforesaid that chameleon is essential for generic modified
theories. In what follows we outline the underlying concept of chameleon screening.

4.2. Chameleon theories: Basic idea

In order to set the basic notions of chameleon screening, let us first for simplicity
consider a massive scalar field nonminimally coupled to matter,86

L = −1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 +

α

Mp
ϕT (55)

which on varying with respect to ϕ gives the following equation of motion,

(� +m2)ϕ = − α

Mp
T. (56)

In this case, for a given static point source of mass M , r = 0, T = −Mδ3(r), the
potential sourced by the field is given by

α

MP
ϕ = −2α2GM

e−mr

r
(57)

which is the extra contribution to the gravitational potential of the point source
due to scalaron. The total potential is then given by

Φtot = −GM
r

(1 + 2α2e−mr). (58)

As mentioned before, α is typically of the order of one. Hence the extra force
mediated by the exchange of scalaron between two point masses is of the order of
the gravitational force for light mass mr 
 1, relevant to late-time cosmic accel-
eration. The latter is equivalent to G → Geff = G(1 + 2α2) which is clearly in
conflict with local physics. The consistency at the level of solar system demands
that mrAU 
 1 or m � 10−27 GeV. It is therefore clear that the mass of scalaron
should be environment-dependent m(ρ) — light in low density regime (at large
scales) and heavy in high density regime locally. We shall briefly demonstrate in
the discussion to follow how the chameleon field generated by an extended mas-
sive source may get effectively decoupled from the source leaving local physics
intact.

4.3. Chameleon at work

Let us briefly examine how the chameleon mechanism operates.30,31 The aforesaid
discussion makes it clear that we should choose a suitable scalar field potential to
achieve the goal. The inverse power law potentials are generic, they become shallow
at late time and might give rise to late-time acceleration. The effective potential in
the presence of the coupling is given by

Veff = V (ϕ) +
α

Mp
ρmϕ. (59)

It is clear from Fig. 5 that Veff has a minimum which is closer to the origin when
the density of the environment is higher. Since V ′′(φ) is positive and monotonously
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Fig. 5. Effective potential for a chameleon field. V (φ) is generically a run away potential without
a minimum. The effect of direct coupling with matter modifies the potential such that the effective
potential acquires minimum. Higher is the density of environment, closer would be the minimum

to the origin. The potential is a monotonically decreasing function (we might imagine (V ∼ 1/φn)
such that its second derivative V ′′(φ) is also monotonically decreasing and positive.

decreasing for the generic cases, the mass of the field around the minimum is larger
when the matter density of the environment is higher and vice versa what was
sought for.

We next need to compute the field profile for an extended body of mass M. In
the case of the gravitational potential a la Newton, the answer is simple: the point
particle mass in the expression of its gravitational potential gets replace by M. It
should be emphasized that such a privilege is restricted to 1/r potential only. In
any other case and in particular in the case under consideration, the potential of
an extended body, apart from its mass, would also depend upon its density. The
contribution to the field profile coming from the interior gets Yukawa suppressed
due to its large mass in high density regime. Contribution, if any, comes from a
thin layer under the surface of the body, see Fig. 6.

As shown in Refs. 30 and 31,

α

MP
ϕ = −GM

r
α2εthin, (60)

Fig. 6. Figure shows a body of mass M with a density ρin embedded in an environment with
density ρout � ρin. Contribution to the field profile at distance r from the massive body comes
from a thin layer under the surface of the massive body due to Yukawa suppression in the
interior.
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where εthin is the thin shell parameter given by

εthin ∝ ϕout
min(ρ) − ϕin

min(ρ)
ΦM

, (61)

where ΦM is the Newtonian potential of the extended body. Since ϕin
min(ρ) 


ϕout
min(ρ) because of the high density inside the body, it can be dropped. The success

of chameleon mechanism then depends upon the fact that the gravitational potential
for an extended body, say Sun, is large and ϕout

min(ρ) is small in the solar system.
As for the accuracy of GR, the agreement can be reached by suitably choosing
model parameters through ϕout

min(ρ). As a result, the effective coupling αeff = αεthin

in Eq. (60) can be made as small as desired, thereby effectively giving rise to
decoupling of the field from the source or the screening of the extra force.

At the onset, it looks like that we have succeeded in getting late-time cosmic
acceleration via the extra degree of freedom ϕ, which imbibes large scale modifica-
tion of gravity, keeping it invisible locally. However, a close scrutiny of chameleon
theories reveals that required screening of extra degree(s) leaves no scope of these
theories for late-time cosmic acceleration. The problem stems from high accuracy
of Einstein theory in solar system and laboratory experiments.

5. Spontaneous Symmetry Breaking in Cosmos: A Beautiful Idea
that Does Not Work

As mentioned before, universe has undergone a transition from deceleration to
acceleration between z = 0 and z = 1. It is tempting to relate the latter to breaking
of a hypothetical symmetry which can be realized by invoking a specific conformal
coupling.87–89 Let us very briefly outline the basic features of the model dubbed
symmetron which is based upon the following Einstein frame action:

S =
∫
d4x

√−g
[
M2

p

2
R− 1

2
∂µφ∂

µφ− µ2

2
φ2 − λ

4
φ4

]
+ Sm[A2(φ)gµν ,Ψm]. (62)

The symmetron potential is invariant under Z2 symmetry (φ → −φ) and one can
preserve this symmetry in the effective potential by making the following choice for
A(φ)87,88:

A(φ) = 1 +
φ2

2M2
(φ
M), (63)

where M is a mass scale in the model. The effective potential then takes the
following form:

Veff =
1
2

( ρ

M2
− µ2

)
φ2 +

λ

4
φ4. (64)

The mass of the field now depends upon the density of environment, naively, the field
mass is given by m2

eff = ρ/M2 − µ2. Thus, in high density regime, mass depends
upon density linearly, m2

eff ∼ ρ/M2 > 0. In this case, the system resides in the
symmetric vacuum specified by φ = 0. The requirement of local gravity constraints
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(a) (b)

Fig. 7. (a) Displays the symmetron potential in high density regime. In this case the system
resides in the symmetric vacuum φ = 0. On the other hand, in the low density regime around
ρ = ρcr, the symmetric state is no longer a true ground state, (b) the system then makes transition
to one of the ground states giving rise to spontaneous symmetry breaking of Z2 symmetry of the
underlying system.

puts an upper bound on the mass scale, M and there is no reason for it to be
consistent with dark energy. We should note that in the case of chameleon, there
is more flexibility, the mass depends on density nonlinearly. As shown in Refs. 87
and 88, M ≤ 10−4Mp.

As the density redshifts with expansion and ρ drops below µ2/M2, tachyonic
instability builds in the system and the symmetric state φ0 = 0 is no longer a true
minimum. The true minima are then given by (see Fig. 7)

φ0 = ±

√√√√µ2 − ρ

M2

λ
. (65)

The mass of the symmetron field about the true minimum is given by ms =
√

2µ.
Universe goes through a crucial transition when late-time acceleration sets in around
the redshift z ∼ 1. It is therefore natural to assume that the phase transition or
symmetry breaking takes place when ρ ∼ ρcr. Hence we conclude that

ρcr �M2µ2 → µ2 � H2
0M

2
pl

M2
→ ms � H0Mp

M
. (66)

This means that ms ≥ 104H0 which is larger than the required quintessence mass
by several orders of magnitude. In this case, the field rolls too fast around the
present epoch making itself untenable for cosmic acceleration. Invoking the more
complicated potential with minimum with the required height does not solve the
problem. In this case field would continue oscillating around the minimum for a
long time and would not settle in the minimum unless one arranges symmetry
breaking very near to z = 0 by invoking unnatural fine tuning of parameters. There
is no doubt that symmetron presents a beautiful idea but, unfortunately, fails to be
relevant to late-time cosmic acceleration. We believe that it would find a meaningful
application in cosmology in some other form.
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5.1. Scope of chameleon for late-time cosmic acceleration

The large scale modification of gravity effects the gravitational interaction because
of the two reasons. (1) The exchange of extra degree(s) of freedom which couples
with matter source roughly with the same strength as graviton and whose local influ-
ence needs to be screened using a suitable mechanism. (2) The conformal coupling
A(φ) also modifies the strength of gravitational interaction. And to pass the local
tests, A(φ) should be very closely equal to one in high density regime in chameleon
supported theories. The transition universe has undergone during 0 < z < 1, is a
large scale phenomenon and one might think that the mass screening which is a
local effect should not impose severe constraints on how A(φ) changes during the
period acceleration sets in. It turns out that the change in the conformal coupling
suffers as redshift changes from one to zero is negligibly small. Then the question
arises, can such a conformal coupling be relevant to late-time acceleration?

It is well known that the de Sitter universe is conformally equivalent to the
Minkowski spacetime. Does the conformal transformation changes physics? By
“physics,” we mean the relationship between physical observables. In the Einstein
frame we have the Minkowski spacetime where there is a scalar field sourced by the
conformal coupling which directly couples to matter. The masses of all material par-
ticles are time-dependent by virtue of the conformal coupling A(φ). Consequently,
one would see the same relations between physical observables in both the frames.90

The acceleration dubbed self-acceleration is the one which can be removed (caused)
by conformal coupling.44 Late-time cosmic acceleration which is not related to con-
formal coupling is caused by the slowly rolling (coupled) quintessence and is not a
generic effect of modified theory of gravity. Indeed, this is the case if we adhere to
chameleon screening. In what follows we shall describe how it happens. We have
the following relation between scale factors in Einstein and Jordan frames,

aJ(tJ ) = A(φ)aE(tE), dtJ = A(φ)dtE , (67)

and as for the conformal time dt = a(t)dη, it is same in both the frames. In (67),
aJ (aE) denote scale factor and tJ (tE) the cosmic time in the Jordan (Einstein)
frame.

Let us take the derivatives with respect to the Jordan cosmic time tJ of aJ(tJ ) =
A(φ)aE(tE) on both sides,

ȧJ(tJ ) =
1
A

d

dtE
(AaE), (68)

where derivative of Einstein frame quantities is taken with respect Einstein frame
time. Differentiating the last equation again with respect to Jordan time gives

äJ (tJ) =
1
A

(
äE +

Ä

A
aE − Ȧ2

A2
aE +

Ȧ

A
ȧE

)
. (69)

By time derivative “dot” ( ˙ ) of quantity in the Jordan (Einstein) frame, we mean
time derivative with respect to the Jordan (Einstein) time tJ (tE). Multiplying this
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equation on both sides by aJ = AaE , we have

äJaJ − äEaE =

(
Ä

A
− Ȧ2

A2

)
(aE)

2
+
Ȧ

A
ȧEaE . (70)

The right-hand side can be put in compact form by changing the Einstein frame
time to the conformal time from (d/dtE → (1/a)(d/dη)).

Indeed, following Ref. 44, we have a relation which relates ä in both the frames,

äJaJ − äEaE =
(
A′′

A
− A′2

A2

)
=
(
A′

A

)′
, (71)

where “prime” ( ′ ) denotes the derivative with respect to conformal time in the
Einstein frame. Let us note that acceleration in the Einstein frame cannot be caused
by conformal coupling,

ä

a
= − 1

6M2
Pl

((ρφ + 3Pφ) + αρA(φ)). (72)

Thus, in case acceleration takes place in the Einstein frame, it can only be caused
by slowly rolling quintessence (ρφ + 3Pφ < 0). This implies that acceleration in the
Jordan frame and no acceleration in the Einstein frame is generic effect of conformal
coupling or large scale modification of gravity. In this case, while passing from the
Jordan to the Einstein frame, acceleration is completely removed. We can adopt
the following definition44:

self-acceleration: äEaE < 0; äJaJ > 0 (73)

which implies (
A′

A

)
≥ äJaJ . (74)

Next, we can express A′ through its variation over one Hubble (Jordan) time. It
then follows that

A′ = ȧJ∆A; ∆A =
(

1
HJ

dA

dtJ

)
, (75)

d

dtJ

(
ȧJ ∆A

A

)
≥ äJ . (76)

Integrating the above relation on both sides, we find44

∆A
A

� 1. (77)

As demonstrated in Ref. 44, screening imposes a severe constraint on the change
of coupling during the last Hubble time ∆A 
 1. Thus, self-acceleration cannot
take place in this case. In most of the models supported by chameleon screening,
acceleration takes place in both frames such that äJaJ and äEaE cancel each other
with good accuracy or ∆A 
 1. In this case acceleration can only be caused by
slowly rolling quintessence.
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We therefore conclude that theories of large scale modification based upon
chameleon screening have no scope for late-time cosmic acceleration. These the-
ories are also plagued with the problem of large quantum corrections due to the
large mass of the chameleon field required to satisfy the local gravity constraints.

5.2. Modified theories of gravity : Vainshtein screening

It is clear from the above discussion that chameleon mechanism would fail if the
mass of the field is zero. How then to screen the local effects induced by such a
field? There is superior field theoretic mechanism for hiding the massless degrees
of freedom known as Vainshtein mechanism.33 It does not rely on mass of the field
and operates dynamically through kinetic suppression which was suggested by A.
Vainshtein in 1972 to address the problem of vDVZ38,39 discontinuity in Pauli–
Fierz (PF) theory.78 This mechanism can be consistently implemented through
galileon field π (Refs. 34, 35, 41, 91–94) whose Lagrangian apart from the stan-
dard kinetic term contains nonlinear derivative terms of specific form. The strong
nonlinearities become active around a massive body below Vainshtein radius which
effectively decouple the field from the source leaving GR intact there. In a space-
time of dimension n, there is a fixed number of total derivatives one can construct
using ∂µ∂νπ correspondingly there is fixed number of galileon Lagrangians in each
spacetime dimension.

Let us list the galileon Lagrangians in the case of four dimensions,41

L1 = π, (78)

L2 = −1
2
(∂µπ)2, (79)

L3 = −1
2
(∂µπ)2�π, (80)

L4 = −1
2
(∂µπ)2[(�π)2 − ∂µ∂νπ∂

µ∂νπ], (81)

L5 = −1
2
(∂µπ)2[(�π)3 − 3�π(∂µ∂νπ∂

µ∂νπ) + 2∂α∂βπ∂
β∂δπ∂α∂

δπ]. (82)

Due to the specific underlying structure from which the galileon Lagrangians can be
constructed, the equations of motion for galileon field are of second-order despite the
higher derivative terms in the Lagrangian.41 Second, the galileon Lagrangians are
invariant under shift symmetry, π → π+bµxµ +c, in flat spacetime thanks to which
their equations of motion can be represented as the divergence of a conserved current
corresponding to the shift symmetry. Before we proceed ahead, let us remark that
physics of Vainshtein mechanism is already contained in the lowest order Lagrangian
L3 (Refs. 93 and 94); higher order Lagrangians add nothing to it. However, L3 alone
cannot give rise to de Sitter solution needed for late-time cosmology; we need at
least L4 to serve the purpose.91,92 Since we will not address the phenomenological
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issues of galileon field applied to late-time cosmology, we shall restrict ourselves to
the lowest order galileons.

5.3. Vainshtein mechanism: Basic idea

In the case of the chameleon, the mass screening relied on the effective potential,30,31

�ϕ =
(
V (ϕ) +

α

Mp
ρmϕ

)
,ϕ

(83)

such that the mass of the field turned large in high density regime which then
decouples it from the source. In the case of massless field,

�ϕ = +
α

Mp
ρm (84)

chameleon ceases to work. We observe that the multiplication of the left-hand side
of (84) by a constant is equivalent to dividing the coupling constant α on the right-
hand side by the same constant. The latter means that enhancement of kinetic
term effectively suppresses the coupling of the field to matter. However, we cannot
do it by hand, it should be implemented by field theoretic framework. In Vain-
shtein mechanism, the latter is achieved dynamically in a very intelligent manner
by making use of the galileon field.

Let us briefly illustrate how kinetic suppression takes place in galileon field
theory. To this end as mentioned before, it is sufficient to consider the lowest galileon
Lagrangian L3 which gives rise to the following equation of motion41,93–95:

�π +
1
Λ3

[(�π)2 − ∂µ∂νπ∂µ∂νπ] = − α

Mp
T,

where Λ = (m2Mp)1/3 is the cut-off in the effective Lagrangian and m ∼ H0. The
second term on the left is nonlinear which may dominate over the standard kinetic
term at small scales. Indeed, for a static source of mass M(T = −Mδ3(r)), in the
case of spherically symmetric solution of interest to us, the above equation acquires
the following form:

1
r2

d

dr

(
r3

[(
π′

r

)
+

1
Λ3

(
π′

r

)2
])

=
α

Mp
Mδ3(r), (85)

which thanks to the total derivative structure of equation of motion readily inte-
grates to (

π′(r)
r

)
+

1
Λ3

(
π′(r)
r

)2

= α
rs
r3
, (86)

where rS is the Schwarzschild radius of the massive body. We observe that at small
distance the second term in the expression (86) dominates over the first which tells
us that

π′ =
(
rSαm

2

r

)1/2

. (87)
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Fig. 8. The figure shows Vainshtein mass screening characterized by galileon field profile for
massive body of mass M . The character of nonlinearity crucially changes the π profile around
the body below Vainshtein radius rV . Within this radius, the π mediated force is negligible as
compared to the Newtonian force and GR is left intact there. The modification can be felt beyond
Vainshtein radius only.

As a result the extra force due to galileon field is suppressed as compared to the
gravitational force in the neighborhood of the massive body (see Fig. 8)

Fπ

Fgrav
=
(
r

rV

)3/2


 1, r 
 rV , (88)

where the Vainshtein radius is given by

rV =
( rS
m2α

)1/3

. (89)

On the other hand, at large scales the usual kinetic term dominates over the non-
linear term and galileon force becomes comparable to gravitational force,

π′ =
rSα

r2
⇒ Fπ

Fgrav
∼ 1. (90)

Let us estimate rV for Sun,

rV =
GMs

m2
=

Ms

H2
0M

2
p

� 100 pc. (91)

Hence, solar physics will not feel the presence of galileon field; any modification
of gravity due the galileon degree of freedom is locally screened out due to kinetic
suppression leaving GR intact in a radius much larger than the solar dimensions. For
our galaxy, rV � 1.2Mpc; the effect of galileon field might be felt at large distance
through late-time cosmic acceleration. It is worthwhile to note that galileon field is
stable under quantum corrections unlike the chameleon.

5.4. Galileons and their higher dimensional descendants

Galileon field provides with a well-defined field theory in four dimensions which
is ghost-free. On the other hand we have well-defined and consistent extension of
Einstein gravity in higher dimensions. In five and six dimensions, the Einstein–
Hilbert action is extended by including the Gauss–Bonnet term,96 in further higher
dimensions, the Lovelock structure comes into play.97,98 In fact, Gauss–Bonnet term
is the simplest form of Lovelock Lagrangian. Thus, in each spacetime dimension, the
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consistent gravity action, which leads to second-order equations of motion, thereby
free from Ostrogradki ghosts,99 is fixed. It is tempting to think that the two ghost-
free systems, the galileon field theory in four dimensions and higher dimensional
Lovelock gravity, are some way related to each other. In fact the galileon field theory
in four spacetime dimensions is a representative of higher dimensional gravity a
la Lovelock. It is interesting that dimensional reduction of R + αR2

GB gives rise
to lower order galileon Lagrangian, L3, the role of galileon field is played by the
dilaton field. In what follows we briefly outline how this connection between two
ghost-free theories is established.

Let us consider five-dimensional gravity where Einstein–Hilbert is supplemented
with Gauss–Bonnet term,

S =
∫
d5x
√

−g5(R + αR2
GB) (92)

which is the simplest form of Lovelock theory. We then use the standard prescription
to reduce the action to four dimensions and use the following metric ansatz:

ds2 = gµνdx
µdxν + eπ(dx5)2, (93)

where the scalar field π appearing in the metric plays the role of the size of the
extra dimensions. The dimensional reduction assuming the extra dimension to be
compact gives the following action:

S =
∫
dx4√−geπ/2(R + d1(∂µπ)2 + α(R2

GB + d2Gµν∂
µπ∂νπ

+ d3(∂µπ)4 + d4(∂µπ)2�π)). (94)

The last term in the reduced action is the lowest order galileon term L3. It is then
tempting to go beyond Gauss–Bonnet, including higher order Lovelock terms. In
this case, it was demonstrated in Ref. 100 that the dimensional reduction reproduces
higher order galileon Lagrangians. It is therefore not surprising that galileon field
theory in four spacetime dimensions is ghost-free — galileons are the representatives
of higher dimensional Lovelock theory in four dimensions.

6. Glimpses of Massive Gravity

It is commonly believed that an elementary particle of mass m and spin s is
described by a field which transforms according to a particular representation of
Poincare group. In field theory, formulated in flat spacetime, mass can either be
introduced by hand or generated through spontaneous symmetry breaking but gen-
eral theory of relativity is not formulated as a field theory. One could naively con-
sider the metric gµν as field and try to introduce mass via the invariants det gµν

or Tr gµν which obviously do not serve the purpose. Hence we require a field which
in some sense could represent gravity. The spin-2 field hµν should be relevant to
gravity as it shares an important property of universality with Einstein GR a la
Weinberg theorem. It states that the consistent quantum-field theory of a spin-2
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field in Minkowski spacetime is possible provided the field interacts with all other
fields including itself with the same coupling. General theory of relativity can be
thought of as an interacting theory of hµν field. It is therefore natural to first for-
mulate the field theory of massive spin-2 field in flat spacetime and then extend it
to nonlinear background.

Before we proceed further, let us remember, how objects with spin-0, spin-1 and
spin-2 transform under Lorentz transformation Λµν ,

spin-0 φ′ = φ, (95)

spin-1 A′
µ = Λα

µAα, (96)

spin-2 hµν = Λα
µΛβ

νhαβ . (97)

The linear massive theory of gravity of hµν was formulated by Fierz and Pauli
in 193978 with a motivation to write down the consistent relativistic equations for
higher spin fields including spin-2 field. Let us first cast the relativistic equations
of spin-0 and spin-1 fields,

(� +m2)φ = 0, (98)

(� +m2)Aµ = 0; ∂µA
µ = 0. (99)

It is important to note that the condition ∂µA
µ = 0 is in-built in the equation

of motion and not imposed from outside. Indeed, from the Lagrangian of massive
vector field,

L = −1
4
FµνF

µν − 1
2
m2AµA

ν (100)

follows the following equations of motion:

∂µF
µν +m2Aν = 0 (101)

which upon taking the divergence on both sides immediately gives us ∂µA
µ = 0.

Thus, this condition for massive vector field follows from the equations of motion
themselves. Massive vector field has clearly three degrees of freedom. It is important
to notice that this condition can no longer be derived from the equation of motion
in the m→ 0 limit which is consistent with the fact that we have gauge invariance
in this case which allows us to get rid of two unphysical degrees of freedom. Gauge
invariance allows to fix the gauge which can be done in infinitely many ways. For
instance we can choose the radiation gauge, A0 = 0 and ∇ · A leaving behind two
transverse degrees of freedom.

Respecting relativistic invariance, we could also choose Lorentz gauge, ∂µA
µ =

0. In massless case, this condition is imposed from outside in view of gauge freedom
and this should clearly be distinguished from ∂µA

µ = 0 occurring in the case of
massive vector field as a consequence of equations of motion. Lorentz gauge does
not completely fix the gauge invariance. Indeed, there is a residual gauge invariance,
namely, Aµ → Aµ + ∂µα such that �α = 0 which when fixed leaves behind two
physical degrees of freedom.
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Let us now cast the equation of motion of hµν ,

(� +m2)hµν = 0; ∂µhµν = 0; hµ
µ ≡ h = 0 (102)

which tells us that massive graviton in PF theory has five degrees of freedom.51

In accordance to our expectations, the number of degrees of freedom, 2s + 1 is 3
for massive vector field and 5 for massive graviton. The first condition on hµν is
analogous to the case of vector field. The vanishing of trace of hµν is very specific
to linear theory and we will come back to this point later in our discussion. The
equations of motion (102) can be obtained from PF Lagrangian which has the
following form:

LPF = Lm=0 − 1
2
m2(hµνh

µν − h2), (103)

Lm=0 =
1
2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µh

µν∂νh+
1
2
∂λh∂

λh. (104)

The first term in (103) describes the massless graviton and can be obtained by con-
sidering small perturbations around flat spacetime, gµν → gµν +hµν and expanding
the Einstein–Hilbert Lagrangian in hµν up to quadratic order. It is easy to verify
that the massless Lagrangian is invariant under the following gauge transformation:

hµν → hµν + ∂µξν + ∂νξµ (105)

which fixes the relative numerical values of coefficients in Lm=0. The second term
in (103) is the PF mass term which breaks the gauge invariance (105).51 The PF
mass term includes two invariants that one can form using the spin-2 field. Let
us notice that the mass term could in general be a linear combination of these
invariants c1hµνh

µν − c2h
2; one of the multiplicative constant, say, c1 could be

absorbed inm2 leaving the other one c2/c1 arbitrary. The PF mass terms correspond
to an intelligent tuning of the coefficient which excludes the ghost from linear theory,
we shall come back to this point in the forthcoming discussion.

Recently, there was an upsurge of interests in massive gravity. A ghost-free
generalization of PF to nonlinear background known as dRGT was discovered by
de Rham, Gabadadze and Tolley.36,37 However, the motivation to go for massive
gravity now is quite different from the original one. Adding mass to graviton might
account for late-time cosmic acceleration. For the sake of heuristic argument let
us note that gravitational potential for a static point source in the case of massive
graviton with mass m is given by −GMe−mr/r with m ∼ H0 which reduces to
Newtonian potential for mr 
 1. However, at large scales such that mr ∼ 1,
adding mass to graviton gives rise to weakening of gravity. Thus, the introduction
of mass is effectively equivalent to repulsive effect a la cosmological constant in
the standard lore. It is broadly clear that cosmological constant gets linked to
graviton mass which is altogether a novel perspective. Second, one might have a
naive feeling that since the mass of graviton is very small, the PF theory would
not disturb the predictions of GR in the local neighborhood. The deep scrutiny of
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the problem reveals that it does not hold and that the predictions of PF theory
in the solar system are at finite difference from GR, hence the theory suffers from
discontinuity problem dubbed vDVZ discontinuity.38,39 In what follows, we shall
outline the problem and expose its underlying cause.

6.1. vDVZ discontinuity

As mentioned before, the field hµν universally couples to any matter source Tµν . If
we expand the Einstein–Hilbert term in the presence of a matter Lagrangian up to
leading order in hµν , we not only reproduce Lm=0 but also obtain the coupling of
the field with the source, namely, hµνT

µν/Mp. Hence the Lagrangian of the massive
spin-2 field interacting with matter source has the following form51:

L =
1
2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µh

µν∂νh

+
1
2
∂λh∂

λh+
1
2
m2(hµνh

µν − h2) +
1
Mp

hµνT
µν . (106)

In order to understand the problem, we need to compute the scattering amplitude
of two matter sources for which we need the expressions of propagators for massless
and massive gravitons (Fig. 9). These propagators can be written using the free
part of (106), skipping details, we quote their expressions,51

D0
αβ,ρσ = − 1

k2

[
1
2
(ηαρηβσ + ηασηβρ) − 1

2
ηαβηρσ

]
, (107)

Dm
αβ,ρσ = − 1

k2 +m2

[
1
2
(ηαρηβσ + ηασηβρ) − 1

3
ηαβηρσ

]
. (108)

Fig. 9. Tree level scattering of two matter sources Tµν and Sαβ which couple with the universal
coupling constant 1/Mp and Dµν,αβ is the propagator of massive (massless) graviton.
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It should be noticed that the numerical coefficients of last terms in (107) and (108)
are different. The fact, that a massive graviton has five degrees of freedom whereas
massless graviton has only two, is reflected in the expressions of their propagators.
Let us now compute the tree level amplitude of scattering of two matter sources
Sαβ and Tαβ in massless and massive gravity. The corresponding amplitudes are
given by

A(0) = −8πG
k2

(
SµνT

µν − 1
2
ST

)
, (109)

A(m) = − 8πG
k2 +m2

(
SµνT

µν − 1
3
ST

)
. (110)

In the case of two static sources with masses M1 and M2, we have

A(0) = −4π
k2
GM1M2, (111)

A(m) = − 4π
k2 +m2

(
4
3
G

)
M1M2. (112)

In mass going to zero limit m → 0, the amplitude A(m) does not reduce to A(0)

as opposed to our naive expectations. Massive gravity in m → 0 goes to a the-
ory in which G gets replaced by 4G/3. We therefore conclude that linear massive
gravity is at finite difference from GR and hence inconsistent. In case we deform
the parameters in a theory and then switch off the deformation, logical consistency
demands that the modified theory should reduce to the original setup which does
not happen in the case of PF theory.

Before addressing the problem, we have to clearly understand the underlying
reason for vDVZ discontinuity. We shall present heuristic arguments without going
into detailed exposition of the problem. First of all, we note that the procedure
of taking limit should be legitimate, it should preserve the degrees of freedom.
The correct framework of carrying out such a program is provided by Stukelberg
formalism101,102 which reinstate the gauge invariance broken by PF mass term.
After taking then the m→ 0 limit, we have to worry about the three extra degrees
of freedom. In the case of massive vector field, the extra (longitudinal) degree of
freedom gets decoupled from the system, thereby no discontinuity problem. Let us
recall that in the case of the Yang–Mills, say SU(2), theory, if one of vector bosons
happens to be in the longitudinal state, it can be decoupled from the system whereas
the other two cannot be; in this case one requires Higgs field to address the problem.
It is therefore quite possible that the extra degrees of freedom in the case of gravity
might not decouple from the source. Let us write the following decomposition for
hµν ,

hµν = ht
µν + ∂µAν + ∂νAµ + ∂µ∂νφ. (113)

Such a decomposition can be understood either from group representation or at the
level of Lagrangian formalism.51 In m→ 0 limit, ht

µν , Aµ represent two transverse
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degrees of massless graviton, two degrees of freedom of massless vector field whereas
φ is the longitudinal component of hµν . Let us argue that Aµ will not couple with the
given conserved source Tµν . Its coupling could be of the form (∂µAν +∂νAµ)T µν ; by
integration of parts, we can throw the derivative on Tµν and discard this possibility.
As for the longitudinal component, the only possibility is that it couples with the
trace of Tµν as φT . The detailed investigations reveal that indeed this is the case
and the coupling constant is same as in the case of the massless graviton.51 In
massive gravity, there is an extra contribution to the scattering amplitude due to
the exchange of scalar degree which is of the same order as the amplitude in Einstein
gravity. This could also be noticed by rewriting the propagator of massive graviton
in the following form:

Dm
αβ,ρσ = − 1

k2 +m2

[
1
2
(ηαρηβσ + ηασηβρ) − 1

2
ηαβηρσ

]
− 1

6
ηαβηρσ

k2 +m2
, (114)

where the first term represents transverse part of massive spin-2 field propaga-
tor whereas the second part is nothing but propagator of massive scalar field. It
is therefore clear that the theory under consideration cannot reduce to GR, see
Fig. 10).

We exposed the underlying reason of the discontinuity which is generic to linear
massive gravity a la PF. How do we cure this problem. The irony is that again
we deal with an extra scalar field similar to the chameleon theory. In that case
we implemented chameleon screening which is not viable in this case as the scalar
degree of freedom is massless. It was pointed out by Vainshtein in 1972 that the
linear approximation breaks down in the neighborhood of a massive body below
certain radius rV and that the nonlinear effects screen out any modification to
gravity below rV leaving GR intact there. It is tempting to think that the longitu-
dinal degree of freedom could be galileon though this aspect of Vainshtein screening
became known very recently. Actually, this mechanism is in-built in DGP103 where
lowest order galileon term occurs in the so-called decoupling limit. The connection

Fig. 10. Scattering of two matter sources Tµν and Sαβ at tree level in massive gravity. The
process in the m → 0 limit is represented by the exchange of massless graviton as usual (first
diagram on right) plus an extra interaction mediated by the longitudinal mode φ which couples
with the matter sources with the universal coupling of GR.
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of galileon to screening was the central point in the formulation of dRGT. Before
we discuss this development, let us show that PF theory will have ghost if we try
to extend it to nonlinear background or we break the PF tuning. In both the cases,
we end up with equations of motion of order higher than second which inevitably
leads to Ostrogradki instability or ghosts. It is not by chance that first evolution
equation — the Newton’s second law — is a second-order equation. We should won-
der why dynamical equations that we come across are of second-order. The answer
to this profound question was provided by Ostrogradski. If the higher order time
derivative Lagrangian is nondegenerate, there is at least one linear instability in
the Hamiltonian of this system which means that Hamiltonian is unbounded from
below. In general, if the Lagrangian is not invertible, there are constraints in the
system and Ostrogradski theorem does not hold; such a system might be stable.
The Ostrogradski Lagrangian essentially leads to equations of motion of higher
order than second. While quantizing a system whose Hamiltonian is unbounded
from below, one encounters negative norm states dubbed ghosts.99

6.2. Ostrogradski (ghosts) instability

In order to see how Ostrogradski instability occurs, let us for simplicity consider a
Lagrangian L(q, q̇) with the standard equation of motion (see Ref. 104, an excellent
review on this theme),

∂L
∂q

− d

dt

∂L
∂q̇

= 0. (115)

The Lagrangian is nondegenerate if ∂2L
∂q̇2 �= 0 which simply means that ∂L

∂q̇ depends
upon q̇. In this case, Lagrangian equation can be cast in the form of Newton’s
second law,

q̈ = f(q, q̇) (116)

whose unique solution q(t) requires the knowledge of two initial conditions on q(t)
and q̇(t). We can then transform from configuration space (q, q̇) to phase space
(q, p) by defining the canonical momentum p,

p =
∂L
∂q̇

(117)

which thanks to the nondegeneracy of the Lagrangian allows us to express q̇ in
terms of q and p. One then sets up the Hamiltonian

H(q, p) = pq̇ − L(q, q̇) → dH = q̇dp− ṗdq (118)

from which reads out the Hamiltonian equations,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
(119)

that are equivalent to Lagrangian equation. Things would qualitatively change in
case the Lagrangian depends on time derivatives higher than one. Indeed, let us
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consider the LagrangianL(q, q̇, q̈) for which the equation of motion has the following
form:

∂L
∂q

− d

dt

∂L
∂q̇

+
d2

dt2
∂L
∂q̈

= 0. (120)

In this case, the nondegeneracy of the Lagrangian would imply that ∂L
∂q̈ depends

upon q̈. Lagrangian equation (120) then gives rise to following fourth-order differ-
ential equation:

....
q (t) = f(q, q̇, q̈,

...
q ). (121)

Uniqueness of the solution q(t) of (121) would require the extra information on the
initial values of q̈ and

...
q in addition to (q0, q̇0). The extra information brings in

instability in the system or ghost. Indeed, analogous to the standard case, we have
four canonical variables in this case. Following Ostrogradski, we choose them as

q1 = q, p1 =
∂L
∂q̇1

− d

dt

∂L
∂q̈
, (122)

q2 = q̇, p2 =
∂L
∂q̈
. (123)

Nondegeneracy of the Lagrangian means that we can express ∂L/∂q̈ through q1, q2
and p2. We can then setup the Ostrogradski Hamiltonian,

H = p1q̇1 + p2q̇2 − L(q1, q2, p2) = p1q2 + p2q̇2 − L(q1, q2, p2). (124)

The Hamiltonian equations for (124) analogous to the standard case have the similar
form

q̇i =
∂H

∂pi
; ṗ = −∂H

∂qi
, i = 1, 2 (125)

and it is not difficult to check that they are equivalent to (120) and also repro-
duce phase space transformation. The Hamiltonian (124) acquires a strange piece
with respect to the canonical momentum p1 which primarily appears due to the
higher derivative term in the Lagrangian. As the Hamiltonian (124) is linear in p1,
the dynamical system under consideration is unstable in half of the phase space.
Bringing in one higher derivative brings in one bad degree of freedom. In case the
Lagrangian contains n higher derivative and satisfies the condition of nondegener-
acy, the Ostrogradski Hamiltonian would be linear in all the n momenta and hence
not bounded from below along n directions. The Ostrogradski instability is a very
generic phenomenon which cannot be cured by passing to the quantum theory.
Efforts of quantizing such a system give rise to the negative norm states or ghosts.
By adding constraints to the system, one cannot get rid of these ghosts. One should
either avoid higher order equations or ensure that ghosts do not occur below the
cut-off in the effective theory of interest hoping that UV completion would address
the problem.
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6.3. Ghosts in massive gravity

The choice of PF mass term is very generic, as mentioned before, the violation of
PF tuning leads to ghost. Indeed let us consider the following mass term:

Lm = −1
2
m2(ahµνh

µν − h2), (126)

where a is constant. The Lagrangian L is invariant under the following transforma-
tion pattern like a gauge transformation:

hµν → hµν + ∂µAν + ∂νAµ + ∂µ∂νφ (127)

but the massive term breaks this invariance and we get an additional term for φ
field (vector field is not of interest here) that includes higher derivative term (�φ)2.
As a result the φ Lagrangian we deal with in this case is of the following type:

m2

2d2
((�φ)2) − 1

2
(∂µφ)2, d2 =

Λ4
c

2(a− 1)
. (128)

where Λc is the cut-off of the theory. The first term in this expression is dangerous,
this is the higher order derivative term which leads to ghost in accordance with the
Ostrogradski theorem. Let us compute the mass of the ghost. One can easily check
that (128) is equivalent to the following Lagrangian84:

Lg = −1
2
(∂µφ)2 −m2∂µχ∂

µφ− 1
2
m2d2χ2, (129)

where χ is an auxiliary field. Varying (129) with respect to χ, one finds χ = 1
d2 �φ

and invoking it back into (129), one reinstates the original expression (128). Next,
changing the variable φ→ φ′ −m2χ, one can diagonalize (129),

Lg = −1
2
(∂µφ

′)2 +
1
2
m4(∂µχ)2 − 1

2
m2d2χ2. (130)

Now we make the transformation, χ → χ′ = m2χ, so that the above Lagrangian
takes the form

Lg = −1
2
(∂µφ

′)2 +
1
2
(∂µχ

′)2 − 1
2
d2

m2
χ′2.

It is now clear that (128) describes two degrees of freedom, one of which (χ) is
ghost and its mass goes as

m2
ghost ∝

1
a− 1

(131)

which is infinite in case a = 1, thereby ghost does not propagate in PF theory, it is
led to sleep in its grave. Hence PF tuning is generic for the theory to be a consistent
field theory.

Let us now check that ghost dubbed Boulware–Deser ghost will wake up if we try
to naively extend the theory to nonlinear background.105 In this case the Einstein
equations take the following form84:

Gµν − 1
2
m2[(hµν − hηµν) + O(h2

µν)] = 0, (132)
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where we have allowed nonlinearity in the mass term also. Gauge invariance then
ensures the Bianchi identity,

∇µ(hµν − hηµν) + O(h2
µν) = 0 (133)

which forces the trace of Gµν

Gµ
µ(L) = 2∂µ∂ν(hµν − hηµν) (134)

to vanish at the linear order. This in turn follows from (132) at the linear level that
h = 0. It is therefore clear that the constraint that trace of hµν vanishes is specific
to linear theory. If we allow nonlinearity of lowest order, instead of constraint we
get an equation,

O(∂2h2
µν) − 1

2
m2(−3h+ O(h2

µν)) = 0 (135)

and as a consequence, Boulware–Deser ghost becomes alive and begins to propagate.
Now we get into a dilemma, linear theory has no ghost but plagued with vDVZ
discontinuity which can be resolved by extending the theory to nonlinear background
but the latter makes the ghost alive. At the onset it sounds like a no go theorem. This
is the reason why massive gravity did not progress for a long time. Very recently, a
nonlinear generalization of PF theory was proposed.

7. dRGT at a Glance

The above discussion shows that the extension of PF theory to nonlinear back-
ground leads to ghost. The question then arises, can we generalize PF mass term
higher order than second such that ghost does not occur. The answer is yes —
a very specific structure can do that and the framework is known as dRGT.36,37

Since the PF mass term breaks gauge invariance, the first step is to reinstate the
general covariance which is done by using the Stuckelberg formalism.101,102 One
needs to replace hµν by a general covariant tensor Hµν ; we need four scalar fields
φa, a = 1, . . . , 4,

Hµν = gµν − ∂µφ
a∂νφ

bηab. (136)

An important comment about reinstating the general covariance in (136) is in order.
We could replace flat metric ηab in (136) by any other metric to serve the purpose.
But changing metric would change the underlying physics. There is no fundamental
principle that can allow us to make a particular choice except considerations based
upon simplicity or phenomenology. One way out is to turn the reference metric into
dynamical one and opt for bi-gravity theories. Let us also note that φa is scalar
under diffeomorphism but transforms as a vector under Lorentz transformation.
The PF mass term then becomes

−m
2M2

P

8
gµνgρσ(HµρHνσ −HµνHρσ) (137)
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which is the right object to cast in the nonlinear background,

L =
M2

p

2
R− m2M2

P

8
gµνgρσ(HµρHνσ −HµνHρσ) + Lm, (138)

where we have added the matter Lagrangian. Let us notice that in the unitary
gauge φa = xa, (137) reduces to PF mass term. One can go beyond unitary gauge
and write helicity decomposition for φa using canonical fields,

φa = xa +Aa + ηab∂bφ. (139)

As mentioned before, we can ignore the vector field and focus on helicity zero
component,

Hµν = hµν + 2∂µ∂νφ− ηαβ∂µ∂νφ∂α∂βφ (140)

which is justified in a limit known as decoupling limit.

7.1. Decoupling limit

The decoupling limit is some sort of high energy limit. This limit is very helpful
in counting the degrees of freedom in massive gravity and provides with a valid
framework to discuss the mass screening in the local environment.

In this limit one is dealing with energies much higher than the mass of the
graviton,36,37,40,79

Mp → ∞, m→ 0, T = ∞, Λ = fixed,
T

Mp
= fixed. (141)

In the decoupling limit, the dominant φ interactions survive and Einstein–Hilbert
action linearizes in hµν such that (138) reduces to the following36,37,51:

L = Lm=0 − 1
4
FµνF

µν − 3(∂µφ)2 +
1
Λ5

5

[(�φ)3 − �φ(∂µ∂νφ)2] +
1
Mp

φT, (142)

where Λ5 = (m4Mp)1/5 is the cut-off in the theory. A comment about the decoupling
Lagrangian (142) is in order. We first carry out expansion around the unitary
gauge (139) and the expansion around flat spacetime, gµν = ηµν + hµν .

The Einstein–Hilbert action expanded to quadratic order in hµν gives rise to
M2

p/4 multiplied by the quadratic piece in hµν . The expansion of matter Lagrangian
produces hµνT

µν/2. Once we opt for the canonical fields, hµν → 2hµν/Mp, we
obtain Lm=0 from Einstein–Hilbert term plus the last term in (142) from hµνT

µν/2.
As for the higher order terms in hµν , they drop out in the decoupling limit. Hence
Einstein–Hilbert action linearizes in the decoupling limit.

Next by invoking the helicity decomposition in the mass term and using the
canonical normalization for Aµ → 2Aµ/mMp and φ→ 2φ/m2Mp, we obtain other
terms in (142) in the decoupling limit.d Let us first note that φ coupling with

dActually, φ is mixed with hµν and one needs to invoke conformal transformation to diagnolize
the degrees of freedom. Lm=0 is not invariant under conformal transformations, it gives rise to
(∂µφ)2 term in (142).
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matter source survives the decoupling limit whereas the vector field coupling does
not. The nonlinear derivative φ self-coupling is controlled by the cut-off Λ5 which
is precisely the scale at which nonlinearities become important. The nonlinear cou-
pling is responsible for restoring GR below Vainshtein radius defined by the cut-off.
Unfortunately, the higher order derivative terms in (142) are dangerous; they do
not belong to the class of galileons and give rise to Ostrogradski ghost. Thus, φ
acquires an additional degree of freedom, a ghost which precisely cancels the con-
tribution of longitudinal degree of freedom and restores GR within Vainshtein radius
in the nonlinear background.51 We thus solve vDVZ discontinuity but a ghost gets
introduced in the process which is unacceptable. It would have been really remark-
able had the higher order derivative φ Lagrangian in the decoupling limit been a
galileon Lagrangian! The question then arises, can we include higher order terms
in the Lagrangian (138) such that ghosts do not occur. We consider the following
generalization37:

L =
M2

p

2
R− 1

8
m2M2

pU(Hµν , gµν). (143)

The expansion of U in Hµν in its lowest order will produce (138). However, in the
nth order it will give rise to terms like (∂2φ)2n and would lead to ghosts in general
in view of Ostrogradski theorem. Hence, U should be chosen in a very specific and
clever manner such that in the decoupling limit, the nonlinear Lagrangian either
reduces to total derivatives or to the galileons. It is easier first to check it in the
decoupling limit and then generalize the result beyond this limit.

The goal is achieved if the structure of U is such that when expanded in hµν ,

UMp→∞ ≡ Uhµν→0 = U0 + FG(φ)hµν + · · · (144)

the zeroth-order term, U0 is a total derivative and does not reflect on the equations
of motion. The first-order correction is important in the expansion (144), the only
option for it not to be dangerous is that FG(φ)hµν should be represented by a
galileon field alone once the Lagrangian is diagonalized, thereby ghost-free despite
being higher derivative. As for the higher order terms in the expansion (144), the
same should keep repeating. Actually, dRGT operates with a specially chosen form
of U which satisfies this criteria. It becomes cumbersome to tackle the higher order
terms in the expansion of U ; one can then work in the unitary gauge to confirm
that the sixth degree of freedom is indeed absent in dRGT.

Let us now specify the form of L,

Smass =
m2M2

Pl

8

∫
d4x

√−g[U2 + α3U3 + α4U4]. (145)

In action (145), α3, α4 are two arbitrary parameters and Ui are specific polynomials
of the matrix,

Kµ
ν = δµ

ν −
√
gµα∂αφa∂νφbηab, (146)

1630031-40



2nd Reading

October 28, 2016 8:22 WSPC/S0218-2718 142-IJMPD 1630031

Late-time cosmic acceleration

given by

U2 = 4([K]2 − [K2]), (147)

U3 = [K]3 − 3[K][K2] + 2[K3], (148)

U4 = [K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3] − 6[K4]. (149)

In (146), ηab (Minkowski metric) is a reference metric and φa(x) are the Stückelberg
scalars introduced to restore general covariance.79 Let us comment on the choice
of the action. We first note that in the decoupling limit, the specially constructed
matrix, K|hµν→0 → ∂µ∂νφ and by virtue of special construction (147), all the U turn
into total derivatives in this limit. Actually, Ui, i = 1, 3 are only nontrivial total
derivatives in four dimensions one can (uniquely) construct from ∂µ∂νφ. The fact
that the zeroth-order term of U2 in the decoupling limit is a total derivative, speaks
the success of PF theory. Next, one can show that galileons occur in the first-order
correction when we expand the mass term in hµν and diagonalize the Lagrangian
using the conformal transformation on hµν . This ensures that local physics is taken
care of by the Vainshtein effect and no ghost occurs in the decoupling limit. It can
be demonstrated that this result remains valid beyond the decoupling limit.

7.2. FRW cosmology : Difficulties of dRGT

We consider a flat FRW metric of the form48

ds2 = gµνdx
µdxν = −N(t)2dt2 + a2(t)δijdxidxj (150)

while for the Stückelberg scalars we consider the ansatz

φ0 = f(t), φi = xi. (151)

In this case the Einstein–Hilbert action and the action (145) become

SEH = −3M2
Pl

∫
dt

[
aȧ2

N

]
(152)

Smass = 3m2M2
Pl

∫
dta3[NG1(ξ) − ḟaG2(ξ)], (153)

where we have defined

G1(ξ) = (1 − ξ)
[
2 − ξ +

α3

4
(1 − ξ)(4 − ξ) + α4(1 − ξ)2

]
(154)

G2(ξ) = ξ(1 − ξ)
[
1 +

3
4
α3(1 − ξ) + α4(1 − ξ)2

]
; ξ =

1
a
. (155)

Variation with respect to N , setting N = 1 at the end, leads to the first Fried-
mann equation

3M2
PlH

2 = ρm + ρr − 3m2M2
pG1. (156)

Variation with respect to f gives the constraint equation
d

dt
(m2a4G2(a)) = 0 → G2(a) =

C

a4
, (157)
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where C is a constant of integration. The constraint equation is problematic as
it implies that a = const. We can invoke spatially nonflat geometry and obtain a
viable background dynamics. However, the latter turns out to be unstable under
perturbations.106 Even if these branches were stable, the absence of spatially flat
geometry would point toward some underlying problem of dRGT. There are clearly
three ways to handle the problem: (1) We may adhere to the point of view that
the mass of graviton is strictly zero and abandon the efforts to look for consistent
theory of massive gravity. (2) Perhaps the easiest way out is to modify dRGT
at the level of cosmology, say by making the mass of graviton a field variable
by replacing m → V (ψ) or by introducing a dilaton field which by itself cannot
lead to a fundamental idea.107 This is similar to curing a wound from outside
without providing an internal therapy. The bi-metric theories and the models of
massive gravity based upon Lorentz violations could be a serious option in this
category.108–110 (3) If we adopt a conservative and pragmatic view, we might claim
that dRGT is a correct theory. It predicts a generic anisotropy in the universe and
points toward the violation of cosmological principle. The recent investigations on
optical polarizations, CMB quadrupole and octopole and the study of radio sources
point toward a large scale anisotropy with the preferred axis (see Ref. 111 and
references therein). We may therefore abandon the FRW cosmology and opt for
an anisotropic background.e (4) The most challenging way out is to modify dRGT
at the fundamental level. Let us note that bi-gravity theories sound promising
with healthy FRW cosmology at late times. Unfortunately, the theory runs into
difficulties in the early universe.112

8. Summary and Outlook

In this brief review we presented a broad account of standard lore of cosmic accel-
eration a la dark energy and large scale modification of gravity. Given the observa-
tional constraints and difficulties associated with model building of dynamical dark
energy, it would be fair to say that cosmological constant emerges in a stronger
position. There are three distinguished features which make it a celebrity. First, it
is the integral part of Einstein gravity and requires no ad hoc assumption for its
introduction. In fact, it makes classical Einstein gravity complete in four dimen-
sions. Second, it provides with the simplest possibility to describe late-time cos-
mic acceleration. Last but not least, it is consistent with all the observations and
performs better than models of dynamical dark energy. Given the present data
which is quite accurate at the background level, we cannot distinguish cosmological
constant from quintessence or large scale modification; the needle of hope points
toward the cosmological constant as the source of cosmic acceleration. At present,

eWe thank S. Mukohyama for highlighting this point.The prejudice against this view is clearly
associated with the fact that most of the successes of the standard model of universe are related to
the homogenous and isotropic geometry and perturbations around it. The paradigm shift obviously
causes a resentment.
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the cosmology community tacitly agrees that at the background level there is noth-
ing but cosmological constant. However, one should admit that there are difficult
theoretical issues associated with cosmological constant. Its incredibly small value
and the absence of a generic symmetry at the associated energy scales to pro-
tect it from quantum corrections make the problem most challenging in theoretical
physics.

With a hope to alleviate the cosmological constant problem, a variety of scalar
field models were introduced. We have here presented basic features of cosmological
dynamics of scalar fields. In our opinion, scalar field models cannot address the said
problem. A fundamental scalar field is plagued with naturalness problem, thereby
one problem translates into another one of similar nature.26

There is a school of thought in cosmology which preaches the necessity of
paradigm shift, namely, that large scale modification of gravity might account for
late-time cosmic acceleration. As we pointed out earlier, the generic modifications
amount to extra degrees of freedom expected to complement Einstein gravity at
large scales. The tough challenges of these scenarios are related to local physics
constraints. In case the extra degrees are massive, the required accuracy of their
screening a la chameleon mechanism in the local neighborhood leaves no scope for
large scale modification to account for late-time cosmic acceleration.

As for the massless degrees, they should be represented by galileon field which
can implement Vainshtein screening. Galileon field appears in the decoupling limit
in massive gravity. We have briefly described the connection of galileon field to their
higher dimensional descendent, the Lovelock gravity which leaves no surprise for
them to be ghost-free. However, the fact that they can protect local physics in the
decoupling limit is a big bonus for galileons. There are, however, issues here which
need attention. Galileons are legitimate representatives of a profound structure in
higher dimensions — the Lovelock theory. The linkage of these two systems may
be established through dimensional reduction — a well-defined procedure to estab-
lish contact with four dimensions we live in. It is really surprising where galileon
field inherits superluminality from. This feature cannot come from Lovelock struc-
ture, may be it is induced from reduction process! One should also ponder upon
the connection (if any) of generalized galileon dubbed Hordenski system to higher
dimensions.

Galileon field serves as a fundamental building block for nonlinear ghost-free
massive gravity. Interestingly, kicking out ghost from the theory brings in super-
luminality, an inherent feature of galileons. Even if we close our eyes on causality
issues, the ghost-free massive gravity a la dRGT miserably fails in cosmology it was
meant for. In our opinion, adding yet new degree to the setup, such as a dilaton, at
cosmology level defeats the original motivation of the theory. In our description of
massive gravity, we avoided technical issues and often resorted to heuristical argu-
ments based upon physical perceptions. And this is consistent with the motivation
of the review to convey the basic ideas of the theme under consideration to a wider
audience.
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There is a beautiful field theoretic framework in the background of the nonlinear
ghost-free massive gravity and we believe that such a beauty cannot go for waste.
We believe that some fundamental idea would resolve the underlying difficulty, may
be something similar to the Higgs mechanism that salvaged the standard model of
particle physics.

On the observational front, we expect to distinguish between Einstein gravity
(with cosmological constant) and modified schemes (f(R), DGP, etc.) in future
surveys. On theoretical grounds, the former emerges cleaner than any large scale
modification. As for the modified theories, despite inherent difficulties, nonlinear
massive gravity deserves attention due to its generic features. It links cosmological
constant to the mass of a fundamental particle, the graviton and provides with
some mechanism of degravitaion. At present, we do not know a consistent model of
large scale modification of gravity. In such situation, one might opt for an effective
description containing a single scalar field of most general nature nonminimally
coupled to matter. We believe that future surveys of large scale structure would
reveal if there is physics beyond ΛCDM.

Clearly, the phenomenon of late-time cosmic acceleration is far from being
understood. This is certainly the puzzle of the millennium and it is therefore not
surprising that there is no easy solution to this problem. Observational missions are
in full swing in cosmology at present and there is no doubt that interesting times
are ahead for theoreticians as well as for observers.
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